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ABSTRACT
Manufacturers are adding intelligent capabilities (e.g. voice assis-
tants, gesture sensing, facial recognition) to home devices at a rapid
pace, and this is leading to an explosion of data generated at the
edge. Traditional wisdom calls for offloading data to the cloud for
further processing as local devices only have limited computational
resources. However, we argue that when we consider the aggregate
processing capability of all devices in the home, there is an oppor-
tunity for processing data inside the home. This has the potential
to offer users with stronger privacy guarantees and potentially
lower latencies. In this paper, we present a performance compari-
son between the capabilities of mobile phones and new hardware
designed for Deep Learning Inference - the Coral TPU and the
NVIDIA Jetson Nano. We also describe a new distributed inference
system, named DeepHome, that can distribute the machine learning
inference tasks to multiple heterogeneous devices in the home. We
discuss various issues related to doing processing in an in-home
context and present initial performance results from our working
system.
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1 INTRODUCTION
In recent years, nearly every device in the home has become “con-
nected” and imbued with sensing capabilities (e.g. Doorbells, Tele-
visions, Fridges, Ovens and even Vacuum Cleaners). Coupled with
the great advances in deep learning algorithms, manufacturers are
adding new functionality to home devices (e.g. voice assistants,
gesture sensing, facial recognition). However, due to the competi-
tive nature of consumer electronics, significant attention is paid to
not unnecessarily inflate the BOM (bill of materials) cost as new
functionality is added.

Existing work proposes to either offload deep learning inference
workloads to the cloud [9, 16, 17, 21] or to handle the workload
within the resource limits of the device using various innovative
techniques [7, 13–15, 18]. There are several negatives to the for-
mer approach: (i) privacy may be impacted because user data is
no longer on personal devices, and (ii) for image and video work-
loads, significant network bandwidth may be required. The latter
approach gives up on the opportunity to utilize the unused capacity
of devices owned by the user.

Besides offloading deep learning workloads to the cloud or run-
ning them on a single device, prior work such as FemtoClouds [10]
and federated learning [8, 12] aim to federate hundreds and thou-
sands of mobile phones from different users to run computational
intensive tasks such as training tasks in machine learning. How-
ever, their approaches cannot be directly applied to Deep Learning
(DL) image inferences in home environments for two reasons. First,
sharing resources across users may raise privacy concerns. Second,
they only focus on either machine learning training tasks [8, 12] or
general computational tasks [10]. Machine learning inference tasks
are not addressed in their approaches. Our work focuses specifically
on the home context, where our only assumption is the presence
of a local wireless network that all the user’s devices are connected
to.

In this paper, we argue that inferences made on sensitive user
data, such as personal photographs and acoustic data, should be
made at home - on the user’s personal devices. In particular, when
we consider the set of devices that are currently ubiquitous in
the market, mobile phones function particularly well as ‘Home
Accelerators’. On the one hand, phones are upgraded by users
at a high frequency. What makes them challenging to use as DL
workload accelerators is that they may become unavailable at any
time. We start by discussing the issue of device churn, and go on to
consider heterogeneity - in particular, we compare the performance
of image inference on mobile phones to two new types of edge
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hardware released this year - the Coral Edge TPU and NVIDIA
Jetson Nano. After that, we provide an overview of DeepHome, a
batch inference system including a new task scheduler (queuing
time aware scheduler) that we built that can distribute machine
learning inference tasks to Android phones in the home. We have
used this system to power AI applications on devices with low
computational resources, while making sure that user data remains
within the home.

This paper makes three contributions. First, we compare the
performance of several newly released edge devices with mobile
phones in terms of DL inference workloads. Second, to the best
of our knowledge, we are the first to take the practical issues of
aggregating the capabilities of in-home devices and provide on-
demand inference capabilities to any other device in home. Third,
we carefully consider issues such as device churn, heterogeneity
and failure, and propose a scheduling solution that accounts for
these. We have implemented the online batch inference system
as an android app, and present an initial evaluation with image
inference tasks on real devices.

2 BACKGROUND AND MOTIVATION
In this section, we discuss some unique characteristics of edge
computing in an unmanaged home environment (as opposed to the
highly managed cloud/datacenter scenario). These are important
motivators to the design of our overall system.

2.1 Device Churn
The number of mobile phones available in the home to run computa-
tion may change with time for multiple reasons. First, some devices
may go offline because of WiFi power conservation. Second, they
may be effectively unavailable as accelerators when their batteries
drop to a certain level or they are used for their primary function
(i.e. making a phone call, running an app). Moreover, mobile phones
are not always at home. Device churn is a key design consideration
and our system must deal with it transparently.

2.2 Devices are Heterogeneous
If we consider the surge in specialized edge hardware designed for
deep learning, we conclude that mobile phones will not be the only
type of home accelerator. From the perspective of design consid-
erations, we conclude that accelerators in the home edge will be
heterogeneous in their computational resources. To better illustrate
this trend, we evaluate and compare the performance of the edge
TPU [1], a 2018 model year smartphone and the NVIDIA Jetson
Nano with image inference tasks. We use the Coral development
board for the edge TPU. The 2018 phone model has an Octa-core
Qualcomm Snapdragon 845 chipset with Adreno 630 GPU while
only the CPU is used in the experiments. The NVIDIA Jetson Nano
has Maxwell GPU, Quad ARM Cortex-A57 processor, and 4GB of
LPDDR4 memory. The model used in the edge TPU, the phone and
the Jetson Nano are Inception v2 for TensorFlow Lite [3], Inception
v2 for TensorFlow Mobile [4], and the standard Inception v2 [2],
respectively. Note that, the sizes of the three models are 12.5 MB,
45.2 MB and 134.6 MB.

In all the cases, the number of images processed by each device
is increased from 100 to 487 (all) in Fig. 1. In this figure, we can

Figure 1: The performance of an image classification algo-
rithmon image batches of various sizes on aCoral EdgeTPU,
a 2018 Smartphone and an NVIDIA Jetson Nano. We can
see that different versions of the same network architecture
(Inception v2) can have markedly different performance de-
pending on the specific DL framework (TensorFlow Lite vs.
TensorFlowMobile vs. Caffe) and the model size. The image
used in the experiments is 2100 × 1919 pixels in dimension.

clearly see that the TPU and the 2018 phone model are much faster
than the Jetson Nano. The TPU is also faster than the 2018 phone
model, which is one of the flagship phone models in 2018. When
processing 487 images with only one device, the edge TPU can
reduce the total inference time of the 2018 phone model by 20.3%
and the Jetson Nano by 66.1%. It is important to note that we are
running different deep learning frameworks on the devices - these
results are not saying that one device is strictly superior to another.
Rather, we observe the stark difference in performance running
different versions of Inception v2 with different DL frameworks
and hardware.

3 SYSTEM DESIGN
In this section, we show the system design of DeepHome.

3.1 Overview
The architecture of the DeepHome is shown in Fig. 2 and we have
two main modules in our system. The first module is the resource
negotiator1, which manages the resources of edge devices, keeps
track of the device churn and maintains the network connections
among devices. On top of the resource negotiator, we build the
scheduling module to schedule the inference tasks. The schedul-
ing module is in charge of the task admission, task monitor and
task scheduling components. We will talk about these modules in
following sections.

1We use resource negotiator and registry interchangeably in this paper.
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Figure 2: The architecture of DeepHome.

3.2 Registry
Even though DeepHome is a distributed system, we introduce a
centralized node, which is called the registry, to maintain the meta-
data of the whole cluster. We use one of the devices as the registry,
which is selected by a leader election algorithm. As we can see in
Fig. 2, there are two major submodules in the registry, which are
device management and state management. The device manage-
ment aims to obtain the up-to-date list of available devices and
their profiles including their computational resources. On the other
hand, the state management is designed to share the state of one
device to all the other devices, which plays an important role in the
task scheduler.

3.2.1 Device Management. One of the key features of our design
is that we can always have the up-to-date device list as devices
connect or disconnect. This is especially important for the scheduler
to know what are the available devices. Otherwise, the scheduler
may assign tasks to unavailable devices.

When a new device is online, it will start to discover other devices
using the Android discovery service and check whether there is
a registry. If yes, it will directly connect with the registry and the
registry will add this device in the device list. On the other hand,
if the device becomes disconnected, the registry can also know
this event through the closure of the socket connections with that
device using WebSockets.

Besides the up-to-date device list, the device management mod-
ule can also gather the capabilities of all the devices such as whether
a device has GPUs or cameras. As some tasks have specific require-
ments such as GPUs, this information can help the scheduler to
select capable devices for the tasks.

3.2.2 State Management. In addition to registering the devices
and maintaining the list of devices, the registry is also designed to
broadcast the status information of the devices. For instance, if a
device intends to broadcast its status information to all the other
devices, it will first send the status information to the registry and
the registry will broadcast the message to all the other devices. This
is because only the registry maintains the network connections
with all the devices in the cluster.

To make it more network efficient, we will aggregate the status
information of several devices in the registry if possible before

broadcasting it to all the devices. With this design, we only need to
broadcast once instead of multiple times in the naive design.

3.3 Scheduling Module
As we can see in Fig. 2, another module is the scheduling module,
which includes the task admission, task monitor and task scheduler
components. The scheduler is the core module that decides where
to place each task for each device. In our design, every device can
be a task submitter and has its own task monitor and task scheduler.
Here, we propose a distributed scheduler design so that each device
can submit the tasks independently and can thus avoid the single
point of failure problem.

As the resources of the edge devices are heterogeneous, instead
of randomly selecting one device to place the task, we may improve
the performance substantially by looking at the status of the other
devices and choose the right device to schedule the task accordingly.
To this end, we propose a scheduler to efficiently schedule the tasks,
which is the queuing time aware scheduler.

3.3.1 Task Admission. Initially, the task will need to go through
the admission control module. In our case, we wait for a certain
amount of time before submitting each batch of tasks. Otherwise,
if there are too many tasks submitted at the same time, timeout
events will be triggered by the task monitor module because of
long queuing delays. After a task is admitted, it is handed to the
task monitor module for registration and logging.

Another fact that needs to be noted is that we submit the tasks
asynchronously in DeepHome. This is because, before submitting
the image inference tasks, we resize the images to reduce the net-
work overhead and to make the images fit to the neural network,
which is also called the preprocessing step. However, if we submit
the tasks sequentially and start the preprocessing step sequentially,
tasks need to wait longer before they can be submitted and it will
greatly reduce the overall throughput. Instead, we submit the tasks
asynchronously, which can submit multiple tasks at the same time
and have higher CPU utilization in the task submitter.

3.3.2 Task Monitor. After a task is admitted, it will be forwarded to
the task monitor module. We implement the task monitor to track
the task status because task failures could be prevalent and we
need to resubmit the tasks if necessary. In our design, after a task is



submitted to an executor in the device, we check the status of the
task every few seconds. If we do not hear from the executor about
the results of the task for a certain amount of time and the number
of failed executions of that task is less than a certain threshold, the
status of the task will be changed to failed and we will launch a
new task and resubmit it to the task scheduler. The task monitor
tracks the status of the tasks for their whole lifetime.

3.3.3 Queuing Time Aware Task Scheduler. Now we discuss the
task scheduler module. As task scheduling happens in each device,
a straw-man approach is random scheduler, which chooses a device
randomly. However, as the devices are heterogeneous regarding
the computational resources and they have different numbers of
pending tasks, we propose a queuing time aware task scheduling
algorithm based on the information collected from all the available
devices/executors2 in the cluster.

We schedule the tasks based on the queuing time in each device
instead of the length of the pending task queue because the later
may only achieve sub-optimal results in some cases. For instance,
if two devices have the same size of pending tasks queue, we will
randomly choose one if we only make the decision based on the
length of the pending task queue. However, the optimal solution is
to choose the device with more powerful computational resources.
Therefore, to make it work on heterogeneous devices, we propose
the queuing time aware scheduler, which can compute the estimated
queuing time on different devices if we schedule the task on those
devices. According to the queuing time information gathered from
other executors, it then schedule the task to the device that offers
the lowest queuing time.

3.3.4 Executors. As shown in Fig. 2, each executor denotes one
device in our case. There are two parts in the executors. First, it will
pick a task from the head of the pending task queue, pull the inputs
from the task submitter and load the deep learning model. When-
ever a task completes, it will send the results to the task submitter
directly. In the second part, the executors also need to update the
queuing time in the pending task queue in the device to support the
functionality of our scheduler. To send the status updates, we can
send the updates to all the devices through the registry with a fixed
frequency. However, in our approach, we only update other devices
when the length of pending task queue changes or the running task
changes in the executor to save the network bandwidth.

4 EVALUATION
In this section, we evaluate the performance of DeepHome in differ-
ent cases and show some interesting results of running DL inference
workloads.

4.1 DeepHome: Prototype and Implementation
We implement a prototype of DeepHome based on Android 8.0.
We use the DNS-SD protocol and the Android discovery service
to discover the devices. Moreover, we adopt a variant version of
Inception v2 [4] as our image inference model.

We use three Android phones in this section, which are referred
to as Phone 1, Phone 2, Phone 3. Phone 1 and 2 were released in
2017 and the other phone was released in 2018. The phones are
2We use devices and executors interchangeably.

listed in increasing order of their computational resources. We also
note that only CPUs are used for the inference tasks in the phones.
The dataset we used includes 487 identical images of a zebra from
Wikipedia [5].

4.2 Performance with One or Multiple Devices
In our experiments, the submission gap is eight seconds divided
by the number of devices for every 50 inference tasks. The result
of running the tasks is shown in Fig. 3. We can see that the tasks
are submitted in a fixed rate in Fig. 3(a) and it takes around 136
seconds to complete all the tasks as shown in Fig. 3(b).

Besides the case with only one phone, we also conduct experi-
ments on multiple phones, which are Phone 1, Phone 2 and Phone
3 in this case. Phone 2 is the only task submitter and the submis-
sion gap is 8/3 seconds for every 50 tasks. The results are shown
in Fig. 3(c). In this figure, we can see the throughput of the three
phones accordingly. Here, the makespan has been reduced from
136 seconds to 61 seconds.

4.3 Device Churn
As DeepHome can also deal with device churn, we also show the
results when the number of devices changes from one to two in
Fig. 4. Again, Phone 2 is the only task submitter and the submission
gap is 4 seconds for every 50 tasks. In Fig. 4, we can clearly see that
Phone 1 joins at the 18th second. Furthermore, in this two phones
case, the makespan is around 119 seconds, which is longer than the
three phones case but shorter than the one phone case.

4.4 Scheduling Delay
We show the distribution of scheduling delays of 487 inference tasks
in our task scheduler in Fig. 5(a). As we can see in this figure, the
scheduling delays in most of the cases are less than 20 ms, thanks
to our simple and efficient scheduling algorithm.

4.5 Time Spent on Image Resizing
The time on resizing the images is shown in Fig. 5(b). In this figure,
we can see that, in 75% of the cases, the time spent on image resizing
is less than 275 ms and almost all of the cases spend less than 500
ms. As we will resize the images before submitting them to other
devices for inference, submitting the tasks asynchronously, which
handles the image resizing asynchronously, can thus reduce the
makespan substantially.

4.6 Inference Time of the Images
As the tasks we used are image classification tasks running the
Inception model, here we also present the inference time of the
images in Fig. 5(c). As we mentioned before, Phone 2 is a 2017
phone model. In this figure, we can see that most of the inference
time lies between 200 ms and 400 ms, with a small number of tasks
finished the inference with less than 200 ms or more than 400 ms.
This also suggests that the resizing time plays an important role in
the inference time of the images.

5 RELATEDWORK
The most closely related work is FemtoClouds [10], which pro-
poses to leverage tens of the mobile devices to offer cloud services



(a) 50 tasks are submitted every eight seconds. Due to
time taken for resizing images and scheduling the work
on an executor, we observe that the high water-mark for
when tasks are ready to be sent to the executor is far less
than 50.

(b) The throughput of running the workload locally (no
network overhead) is stable most of the time and the batch
inference task over 487 images takes 136 seconds.

(c) When scheduling the tasks to three phones, the task
takes 61 seconds in this case, a 2.26x improvement despite
the overhead of network communication and heteroge-
neous devices.

Figure 3: Running the tasks using one phone and multiple phones.

Figure 4: Phone 2 starts the batch inference workload, and
Phone 1 joins after 18 seconds. As our system immediately
utilizes the resources of the additional phone, we see that
performance is better than what was observed in Figure 3(b)
(119 seconds vs. 136 seconds).

in the edge. However, there are three major differences with our
approach. First, FemtoClouds aims to share the computational re-
sources across different users. We only share the resources in the
home environment, where all the devices belong to the same user
or family. Second, the objectives of our scheduling system are dif-
ferent. In FemtoClouds, the goal of scheduling is to maximize the
total computation completed by the system while our scheduling
system cares about minimizing the makespan given fixed work-
loads. Finally, the results in FemtoClouds [10] are mostly based
on the simulations while we evaluate our system with real image
inference workloads.

Some other related work on the inference of machine learning
models are proposed in [19, 22]. In [19], it shows that the load
balancing strategies have a significant impact on the energy con-
sumption in the edge devices. However, the results may not be
applicable for other devices other than the ones used in that paper.
In [22], the authors evaluate the performance of machine learning
inference tasks on different hardware platforms such as Raspberry
PI, FogNode and different machine learning frameworks. Results

across frameworks and hardware vary substantially regarding re-
source footprint, energy and inference time. However, they only
run the inference tasks on individual devices.

Different from the distributed solutions, running the machine
learning model on a single device like mobile devices and wear-
able devices has been studied in [7, 13–15, 18]. Among which, [7]
works on the activity recognition problem using deep learning on
smartwatches and [18] is for optimizing multiple vision models
on wearable devices. Moreover, detailed resource characteristics of
running deep learning on edge devices are shown in [13].

Apart from applications on image inference, data analytics on
video data is another useful application in the edge using machine
learning [6, 11, 20]. [6] shows a general framework for the video
analytics on traffic data. However, the authors in [20] propose to
achieve the tradeoff among the latency, accuracy and the resource
demands of the analytics job through the configurations of the
machine learning models and parameters. While tuning the config-
urations only happens once in [20], Jiang et al. introduce a dynamic
tuning approach for video analytics by changing the configurations
for Neural Networks on the fly.

Besides inference, machine learning training also received tremen-
dous attention. Amongwhich, federated learning [8, 12] is a popular
platform for training in the edge. [12] focuses on improving the
communication efficiency through structured update and sketched
update during the training. While [8] proposes the system design to
manage a large number of unstable devices in the training process.
We also aim to develop the federated learning based training on
top of our system.

6 FUTUREWORK
In the current implementation, we can only schedule the inference
tasks to the phones. In the future, we plan to extend our system
and make it work on other edge devices such as Coral TPU and the
NVIDIA Jetson Nano.

For the scheduling system, we currently schedule the tasks one
by one in the task scheduler. To further reduce the scheduling delay,
in the future, we plan to schedule a batch of tasks each time, which



(a) The scheduling delay. (b) The time spent on resizing the images. (c) The inference time (including resizing time).

Figure 5: The characteristics of our system.

may reduce the scheduling delay substantially and may further
improve the throughput of the system.

We are also very interested in exploring the model locality prob-
lem as it relates to scheduling. As deep learning models grow larger
in size, it is impractical for one device to store all the models. There-
fore, we may consider whether a model is instantiated in the mem-
ory of a device (perhaps for some other task) when making the
scheduling decisions.

Even for one task such as image classification, there are many
models available with different accuracies and run times. In the
future, we also plan to incorporate the time and the accuracy re-
quirements of the tasks into consideration in the scheduling system.
In this case, we will try to schedule tasks to the devices that have
models providing at least higher accuracy and lower response time
than their requirements.

7 CONCLUDING REMARKS
In this paper, we propose a distributed system DeepHome that can
run the inference tasks across various edge devices. To achieve this,
we design and implement a resource negotiator module to manage
the metadata of the whole cluster and share the device status to all
the devices in the cluster. Furthermore, to make DeepHome robust
to device churn and task failures, we introduce our distributed task
scheduling system based on the status of the devices. Finally, we
implement the whole system and conduct extensive experiments
on real devices to validate the performance of DeepHome.
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