
FlowTime: Dynamic Scheduling of Deadline-Aware Workflows and Ad-hoc Jobs

Zhiming Hu, Baochun Li
Department of Electrical and Computer Engineering

University of Toronto
Email: zhiming@ece.utoronto.ca, bli@ece.toronto.edu

Chen Chen, Xiaodi Ke
Huawei Canada Research Center

Toronto, Canada
Email: {chen.cc, xiaodi.ke}@huawei.com

Abstract—With rapidly increasing volumes of data to be
processed in modern data analytics, it is commonplace to run
multiple data processing jobs with inter-job dependencies in
a datacenter cluster, typically as recurring data processing
workloads. Such a group of inter-dependent data analytic jobs
is referred to as a workflow, and may have a deadline due to its
mission-critical nature. In contrast, non-recurring ad-hoc jobs are
typically best-effort in nature, and rather than meeting deadlines,
it is desirable to minimize their average job turnaround time.

The state-of-the-art scheduling mechanisms focused on meet-
ing deadlines for individual jobs only, and are oblivious to
workflow deadlines. In this paper, we present FlowTime, a new
system framework designed to make scheduling decisions for
workflows so that their deadlines are met, while simultaneously
optimizing the performance of ad-hoc jobs. To achieve this
objective, we first adopt a divide-and-conquer strategy to trans-
form the problem of workflow scheduling to a deadline-aware
job scheduling problem, and then design an efficient algorithm
that tackles the scheduling problem with both deadline-aware
jobs and ad-hoc jobs by solving its corresponding optimization
problem directly using a linear program solver. Our experimental
results have clearly demonstrated that FlowTime achieves the
lowest deadline-miss rates for deadline-aware workflows and 2-
10 times shorter average job turnaround time, as compared to
the state-of-the-art scheduling algorithms.

Index Terms—workflow scheduling, big data processing,
deadline-aware scheduling

I. INTRODUCTION

Due to their growing complexities, modern commercial
applications are commonly represented as a group of inter-
dependent Hadoop [1] or Spark [2] jobs [3]. Such a group
of inter-dependent jobs is referred to as a workflow, and
may be associated with a deadline due to the mission-critical
nature of these commercial applications. These deadline-aware
workflows are typically recurring, running on a daily, weekly
or monthly basis. As a consequence, we have rather complete
knowledge of each workflow, including its direct acyclic graph
(DAG) that represents inter-job dependencies, the resource
demand for each job in the workflow, as well as the estimated
running time of tasks in each job. Such information will be
instrumental for designing new workflow-aware scheduling
algorithms that seek to meet workflow deadlines.

It is common for these mission-critical workflows to share
the datacenter cluster with ad-hoc jobs, which are best effort
and non-recurring in nature [4], [5], [6], without any a priori
knowledge of resource demands or running time estimates. We
will still wish to minimize their job turnaround time, defined
as the time of completion minus the time of submission, as
we meet deadlines for recurring workflows.

Existing work in the literature does not consider dependen-
cies across jobs [4], [5], [6] or the performance of ad-hoc
jobs [3]. Rayon [4], for example, assumed that the deadline
for each job is known, which is not the case when deadlines
are associated with workflows rather than individual jobs. To
resolve this issue, Morpheus [5] proposed to infer the deadlines
of jobs from prior runs of workflows. However, it has not
utilized global information of the entire workflow, such as how
jobs depend upon each other. Li et al. [3] ignored ad-hoc jobs,
which can be severely delayed by deadline-aware workflows.

In this paper, we argue that deadline-aware workflows and
latency-sensitive ad-hoc jobs should be jointly optimized.
We present the design and implementation of a new system
framework, FlowTime, to meet as many deadlines for deadline-
aware workflows as possible, and to optimize the average job
turnaround time of ad-hoc jobs at the same time. To achieve
this objective, FlowTime first decomposes the deadlines of
workflows to estimated deadlines of their constituent jobs,
based on the direct acyclic graph (DAG) within each workflow,
used to represent inter-job dependencies.

After deadlines for individual jobs in a workflow have been
estimated, FlowTime is designed to solve an optimization
problem that is specifically formulated to meet workflow
deadlines and optimize the average job turnaround time at the
same time. Just like typical optimization problems related to
resource scheduling [4], [6], our optimization problem is in the
category of integer programming problems. The highlight of
FlowTime is that our specific problem is formulated in such
a way that it can be directly solved using a linear program
(LP) solver, which we are able to prove theoretically. This
way, FlowTime schedules resources in a theoretically sound
and optimal fashion, which traditional resource scheduling
heuristics [4], [5] may not enjoy.

To demonstrate its performance and resource efficiency, we
have deployed a real-world implementation of FlowTime in
YARN, and conducted extensive experiments with standard
benchmarks and trace-driven simulations. Our experimental
results have clearly shown that FlowTime achieves the lowest
deadline miss rates while reducing the average job turnaround
time of ad-hoc jobs by 2-10 times at the same time.

II. BACKGROUND AND MOTIVATION

In this section, we will briefly talk about the system model
and the motivations of our system.

W1, A1

arrive
W1

deadline

A2

(a) Earliest Deadline First (EDF) (b) Our approach

t t

W1
W1A2

A1

0 100 200

A2

arrives

Resource

Cap

0 100 200

W1

deadline

A1

Job1 Job2

W1

Fig. 1. A motivating example.

A. System Model

We consider two kinds of workloads, which are deadline-
aware workflows and latency sensitive ad-hoc jobs. The
deadline-aware workflows can be represented W =
{W1,W2, · · · ,Wi, · · · ,Wl} where l is the total number of
workflows. Each workflow has its own starting time and
deadline. We use wsi and wdi to represent the starting time
and deadline of the i-th workflow. Note that, workflows are
recurring. Therefore, we know the whole direct acyclic graph
(DAG) information of the workflow and all the job information
in the DAG within a specified time window.

Without loss of generality, in the i-th workflow, there are
m interdependent jobs, which can be represented as Qi =
{u1, · · · , um}. All the jobs that depend on the j-th job in the
i-th workflow can be denoted as the set P j

i . The dependencies
among jobs in the i-th workflow can thus be represented
in Pi = {P 1

i , · · · , Pm
i }. Therefore, each workflow can be

denoted as Wi = {Qi, wsi, wdi,Pi}.
Besides the deadline-aware workflows, the latency-sensitive

ad-hoc jobs are also sharing the cluster [5]. These ad-hoc jobs
can be submitted to the system at any time. More importantly,
they do not have deadlines. Instead, minimizing the average
job turnaround time, calculated by the time of completion
minus the time of submission, is their ultimate goal. As the ad-
hoc jobs are new to the system, the job size information is not
available at the time of scheduling. Therefore, the optimization
goal of FlowTime is to meet as many deadlines of workflows
as possible while minimizing the average job turnaround time
of the ad-hoc jobs at the same time.

B. Motivation

Earliest deadline first (EDF) is a naive approach for the
problem. However, this approach may block the ad-hoc jobs
as long as there are deadline-aware workflows in the cluster
even though their deadlines may be far away. As a result, it
will incur high job turnaround time for ad-hoc jobs.

To better illustrate this case, we show a motivating example
in Fig. 1. In this example, there is one workflow W1, which
consists of two interdependent jobs. Along with the workflow,
there are two ad-hoc jobs A1 and A2. The arrival time of W1,

A1 and A2 are 0, 0, and 100, respectively. The deadline of
W1 is 200. Given the earliest deadline first (EDF) approach,
W1 will be scheduled first, followed by A1 and A2. As we
can see in Fig. 1 (a), A1 is delayed by 100 time units before it
can start. The situation could be even worse if there are more
deadline-aware workflows in the cluster.

The key reason for the inferior performance of EDF is that
it tries to complete the workflows as soon as possible even
though their deadlines are pretty loose, which is very common
based on our studies on the traces. For instance, in one of our
traces, the deadline for the workflow is 24 hours, which is set
by its business logic. However, it can complete in only around
2 hours. To avoid this disadvantage, we schedule the deadline-
aware workflows while minimally impacting the performance
of ad-hoc jobs. In other words, we will schedule the deadline-
aware workflows to meet their deadlines while minimizing the
max resource consumption in the cluster across time. After
that, the remaining resources can be used by the ad-hoc jobs
that may arrive at any time. The scheduling results of our
approach is shown in Fig. 1 (b). As we can see, we can meet
the deadline of W1 and leave the remaining resources to ad-
hoc jobs so that the ad-hoc jobs can also be scheduled as early
as possible. The average job turnaround time of the ad-hoc jobs
is reduced from 150=(200+100)/2 to 100=(100+100)/2.

III. SYSTEM DESIGN

In this section, we will present the overview of the design
of FlowTime.

A. Desired Features

Before we introduce the design, here we first show the
desired properties of our scheduling system, which will be
considered throughout of our design.

Scheduling quality: The quality of the scheduling is always
our top concern. In our case, the quality means that more dead-
lines of workflows are met or lower average job turnaround
time of ad-hoc jobs is achieved.

Scheduling efficiency: Besides the scheduling quality,
scheduling efficiency is another critical factor to be considered.
As the job scheduling system runs in a dynamic environment,
an ideal scheduler should be able to react to the task/job
completion events efficiently. In this sense, our scheduler
should be efficient and scalable to the number of jobs in the
system and delivers the scheduling results within a limited
time.

Robustness to estimation errors: Even though the
deadline-aware workflows (jobs) are recurring, the input data
or the code may have changed in different runs of the same
jobs, which will lead to estimation errors as the estimations
are conducted based on the data in prior runs of the jobs.
Both underestimations or overestimations are possible in the
real cases. The scheduling system should be able to handle
both types of estimation errors.

LP-based
Scheduler

Workflows with
Deadlines

Jobs with
Deadlines

Deadline
Decomposition

YARN
Scheduling Decisions

Job/Cluster Statuses
Best effort

Ad-hoc jobs

Fig. 2. The overview of FlowTime.

B. Design Overview

The overview of FlowTime is shown in Fig. 2. We can see
that the first step is deadline decomposition where the deadline
of a workflow will be decomposed into the deadlines of jobs
in that workflow. After that, the jobs with deadlines along
with ad-hoc jobs will be submitted to the LP-based scheduler,
which is the core module for our scheduling system. The LP-
based scheduler will directly interact with the cluster resource
manager YARN in two ways. On one hand, it dynamically
generates scheduling decisions and applies them in YARN. On
the other hand, it will keep track of the job statuses and receive
the job updates such as task completions or job completions
from YARN.

Deadline Decomposition: The deadline decomposition is
the first module of our system. The reasons for deadline
decomposition are two-fold. First, rather than scheduling the
workflows as soon as possible, we can choose to try to
finish the workflows just before their deadlines. Therefore,
we can decompose the deadlines of workflows and take the
deadlines of jobs as milestones for completing the whole
workflow. Second, directly modeling the dependencies among
jobs and scheduling the workflow is an intractable optimization
problem. Therefore, we propose to decompose the deadlines
of workflows and take the deadlines of jobs to guarantee
the dependencies across jobs in a workflow. Moreover, the
problem can be fit in our efficient optimization framework
after decomposition.

In our design, the deadlines of workflows will be de-
composed into the deadlines of jobs. More specifically, we
propose an efficient deadline decomposition algorithm whose
complexity is linear with the number of nodes and edges of
the directed acyclic graph (DAG) of the workflow. The outputs
of the deadline decomposition will be fed to the LP-based
scheduler.

LP-based Scheduler: After the deadline decomposition,
jobs will be scheduled dynamically by solving a linear pro-
gramming (LP) problem. In this way, we can regenerate the
scheduling results once the job/cluster status changes such as
when a task/job completes. As the big data processing appli-
cations are prone to estimation errors, our dynamic scheduling
strategy is more flexible and robust to the estimation errors.

A key insight for the joint optimization of deadline-aware
jobs and ad-hoc jobs is that we schedule the deadline-aware
jobs while minimally impacting the performance of ad-hoc
jobs. To achieve this, the deadline-aware jobs are scheduled

while minimizing the max resource utilization in the cluster
so that the ad-hoc jobs can be scheduled as soon as possible
because they may arrive at any time. However, if there are
no ad-hoc jobs, the remaining resources will be reallocated to
the deadline-aware jobs to achieve work conservation. More
details are followed in Sec. V.

IV. DECOMPOSE THE DEADLINES OF WORKFLOWS

In this section, we will talk about how we decompose
the deadlines of workflows into the deadlines of jobs. This
step transforms the complex DAG scheduling problem into a
simpler problem, which can be further efficiently solved by an
LP solver.

There are a few key requirements in the design. First,
the duration allocated for each job should be larger than
the minimum time needed for each job. For instance, for
a MapReduce job, if the estimated running time of map
tasks and reduces are five seconds and four seconds, then the
minimum running time of the job is nine seconds. Second, the
durations for different jobs should not violate the dependencies
among different jobs in each workflow. For instance, if job 2
depends on job 1, then the starting time of job 2 should not
be earlier than the deadline of job 1. Finally, the deadline
decomposition algorithm should consider that the resources
in a cluster are limited. Otherwise, unreasonable deadline
assignments may lead to infeasible scheduling of jobs in the
cluster.

Based on the principles of design, we propose a two-step
approach for the deadline composition problem. Given a DAG,
we first obtain a sequence of node sets where dependencies
only exist among different sets. After we obtain such se-
quence, we then distribute the total deadline to these node
sets based on the total resource demands in each node set.
For instance, the sequence of the three node sets in Fig. 3 is
{1, {2, 3, · · · , n}, n+ 1}.

A. A Variant Topological Order

This step is designed to meet the second and third re-
quirements. As the nodes in the same node set do not have
dependencies with each other, they can run in parallel and
thus share a same time window. Moreover, by this way, we
can consider the jobs in the same node set altogether in the
process of deadline decomposition.

The algorithm is basically about obtaining a topological
order for the nodes in a DAG. However, the differences are that
we will group the consecutive nodes that have no dependencies

1

n-1

n+1

n

3

2

(a) State-of-art approach

(b) Our approach

…

1

n-1

n+1

n

3

2

…

Fig. 3. The state of the art [7] and our approach.

together. As a result, we can group the nodes that do not have
the dependencies together without violating the dependencies.
We adopt Kahn’s algorithm [8] to obtain the topological order.
For instance, the original output for the topological order of
the nodes in the DAG in Fig. 3 is {1, 2, · · · , n, n+ 1} while
the output of our algorithm will be {1, {2, 3, · · · , n}, n+ 1}.

B. Resource Demand Based Deadline Decomposition

After we have a sequence of node sets, what we need to
decide are the deadlines for all the node sets. First of all,
we need to guarantee the minimum runtime for each node
set, which is decided by the largest minimum runtime for all
the jobs in the same node set. Therefore, we first calculate
the minimum runtime for all the node sets and allocate the
minimum duration to those sets. But the question is, how
should we allocate the remaining time to those node sets1?

A naive approach could be assigning the remaining dead-
lines to the node sets based on their minimum runtime.
However, this approach does not consider the amount of
resources that are needed in each node set. Therefore, if there
are too many parallel jobs in a node set assigned with the
same deadlines, they may not be able to meet their deadlines
as the resources of clusters are limited. Instead, we argue that
the deadlines distributed to different node sets should take the
resource demands of the whole set into consideration. To this
end, we propose to allocate the remaining deadlines to the
node sets based on the total resource demands in the each

1In some cases, the remaining time is negative. We will use the critical
path based approach in [7] to decompose the deadlines of workflows instead.

TABLE I
NOTATIONS USED IN THIS PAPER.

Symbol Meaning
xr
it The amount of type r resource allocated to job i

at time slot t
zrt The total amount of type r resource allocated

at time slot t
Cr

t The total amount of type r resource at time slot t
in the cluster

ai The arrival time of job i
di The deadline of job i
sri The resource need of type r resource for job i

node set where the resource demands are calculated according
to the number of tasks, the task running time and the resource
requirement of each task.

We have a simple example in Fig. 3. In this figure, there are
(n+1) jobs in total and we assume the starting time of job 1
is 0. In our case, we also assume all these jobs have the same
running time and the same resource demands. As the jobs from
job 2 to job n are parallel jobs , they will be assigned the same
arrival time and deadlines. In the traditional approach [7], it
will first find a critical path based on the running time of the
jobs in the graph and decompose the deadlines based on the
runtime of the jobs in the critical path. For instance, in this
case, 1–>2–>(n+1) is the critical path and the job 2 will get
1/3 of the total deadline, which is also the deadline for all
the parallel jobs in the middle of the graph. However, the
traditional approach ignores resource demands of the jobs,
which is problematic as the cluster resources are limited and
there may not be enough resources to host all those parallel
jobs if n is very large. For instance, if the amount of resources
in the cluster cannot support all the parallel jobs from job 2
to job n in the same duration, it will be infeasible to place all
those jobs in this allocated duration.

Instead, in our approach, we both consider the job running
time and the resource demand of the jobs in each node set
when decomposing the deadlines. More specifically, we take
all the (n-1) jobs in the middle into consideration at the
same time as they need more time to complete in a resource
limited cluster. In other words, we consider all the parallel
jobs together when allocating the deadlines. Therefore, the
deadline assigned to job 2 to job n will be (n-1)/(n+1) of the
total deadline in our approach instead of 1/3 of the deadline
in the traditional approach.

V. DYNAMIC SCHEDULING WITH AN LP
After the deadline decomposition, now we have transformed

the problem from scheduling the deadline-aware workflows to
scheduling deadline-aware jobs and latency-sensitive ad-hoc
jobs. In this section, we will show how we schedule these two
types of jobs efficiently while achieving their separate goals.

A. The Original Formulation

After the deadlines of jobs are decided, we are now ready
to allocate the resources for the jobs including deadline-aware
jobs and ad-hoc jobs. More specifically, we propose to allocate

the resources to the deadline-aware jobs and guarantee their
deadlines while minimally impacting the performance of ad-
hoc jobs. We adopt a slot-based formulation2 and he problem
can be formulated as below. The meanings of the notations
are shown in Table I.

lexmin
x,z

max zrt /C
r
t (1)

s.t.
di∑

t=ai

xrit = sri , ∀i ∈ N ,∀r ∈ R (2)

n∑
i=1

xrit = zrt , ∀t ∈ T ,∀r ∈ R (3)

zrt ≤ Cr
t , ∀t ∈ T ,∀r ∈ R (4)

xrit ∈ N0. ∀i ∈ N , ∀t ∈ T ,∀r ∈ R (5)

This formulation only includes deadline-aware jobs and the
goal is to minimize the max resource usages after placing the
deadline-aware jobs so that the ad-hoc jobs can be scheduled
as early as possible to reduce the average job turnaround time.
Therefore, we can meet the deadlines of deadline-aware jobs
and reduce the average job turnaround time of ad-hoc jobs at
the same time.

In this formulation, xrit denotes the amount of type r
resource that will be allocated to the i-th deadline-aware job at
the t-th time slot. We can see that we first accumulate the total
amount of resource allocated to all the n deadline-aware jobs
and normalized it with the total amount of type r resource in
the cluster at time slot t. The normalization is because we want
to make it comparable for different types of resources. After
normalization, we aim to obtain the lexicographical minimal
vector over different r and t. In other words, we prefer more
balanced allocations across different time slots and resource
types.

The first constraint in Eq. (2) shows that we need to satisfy
the resource requirements of each job for all the resource types
from its arrival time to its deadline. Here sri represents the
amount of type r resource is needed for the i-th job. ai and
di are the arrival time and deadline of i-th job.

The second constraint in Eq. (3) shows that the total amount
of resource used by all the n deadline-aware jobs is denoted
by zrt for all the time slots and all the resource types.

The third constraint in Eq. (4) means that the total amount
of resources allocated to all the deadline-aware jobs should not
exceed the total amount of resources available in the cluster
where Cr

t is the resource cap for the type r resource at t-th
time slot. In our case, the resource cap could vary with time
to provide more flexibility to different situations.

In the last constraint, xrit can only be nonnegative integers.
This is because in some resources, we can only use integers to
represent the amount. For instance, in YARN [9], the number
of CPU cores that will be allocated to the application has to be
integers. Therefore, we use integers to represent the resource
allocations. Similar settings are also used in [10].

2The duration of one slot is discussed in Sec. VI.

As we can see, the original problem can be formulated as
an integer linear programming (ILP) problem, which normally
cannot be solved efficiently. Fortunately, we find out that we
can transform the original ILP problem and reduce it to a
linear programming (LP) problem as shown in the following
section.

B. The Equivalent LP
The sort of integer linear programming (ILP) problems that

can be transformed into linear programming problems should
meet two conditions [11]. First, the objective function should
be a separable convex objective function, which means that the
objective function is separable and each part is convex. The
other condition is that the constraint matrix formed by the
coefficients of the constraints should be a totally unimodular
matrix.

Therefore, we first prove that the lexicographical minimal
vector can be achieved by minimizing a scalar instead in
Lemma 1 where u � v means that vector u is lexicographical
no greater than v. We use

g(u) =

k∑
i=1

kui , (6)

to transform the vector to a scalar and k is the dimension of
the vector. Therefore, k = |T ||R| in our case.

Lemma 1. For u, v ∈ Zk, g(u) ≤ g(v) ⇐⇒ u � v.

Given Lemma 1, we can transform the original objective
function to the new objective function as shown below. We can
clearly see that the new objective function can be separated
into multiple convex functions, which meets the first condition.

lexmin
x,z

max zrt /C
r
t = min

∑
t∈T

∑
r∈R

kz
r
t /C

r
t (7)

We further prove that the coefficients in the constraint
matrix form a totally unimodular matrix in Lemma 2, which
is an important indicator about whether an LP has integer
solutions. This is because if the constraint matrix is a totally
unimodular matrix, then the feasible region is an integral
polyhedron and only has integral extreme points. LP solver
algorithms like Simplex will search the optimal solutions from
one extreme point to another. Consequently, the solutions can
be guaranteed to be integral and our problem formulation can
also meet the second condition.

Lemma 2. The coefficients in the constraints (2), (3), (4) and
(5) form a totally unimodular matrix.

After transformation, we can finally make the problem
equivalent to a problem that can be solved by efficient LP
solvers. Here we can now obtain the equivalent LP using the
λ-representation as shown below:

f(y) =
∑
j∈D

f(j)λj ,
∑
j∈D

jλj = y, (8)∑
j∈D

λj = 1, ∀λj ∈ R+,∀j ∈ D. (9)

In the λ-representation, D is the set that contains all the
possible values of y. It introduces an auxiliary variable λj for
every possible values of y and y can be denoted as the linear
combinations of λj and the corresponding possible values.

With λ-representation, the above-mentioned integer linear
programming (ILP) problem in Eq. (1) can be transformed
into the following LP problem:

min
x,z,λ

∑
t∈T

∑
r∈R

∑
j∈Dr

kj/C
r
t · λrtj (10)

s.t.
∑
j∈Dr

jλrtj = zrt , ∀t ∈ T ,∀r ∈ R (11)∑
j∈Dr

λrtj = 1, ∀t ∈ T ,∀r ∈ R (12)

λrtj ∈ R+, ∀t ∈ T ,∀r ∈ R,∀j ∈ Dr (13)
j ∈ Dr, ∀r ∈ R (14)
(2), (3), (4), (5).

The detailed proof are similar with the existing work in
the literature [12], [13]. We omit the proofs of the lemmas
for space limitations. The final LP problem can be effi-
ciently solved by off-the-shelf commercial LP solvers such
as CPLEX [14].

VI. IMPLEMENTATIONS

We implement a plug-in scheduler in YARN based on the
capacity scheduler [15]. More specifically, each job will be
assigned a unique queue when it is admitted to the system.
Therefore, we can dynamically control the amount of resources
that will be allocated to the applications by updating the
queue configurations in capacity scheduler on a real-time
basis. On the other hand, we will also constantly check the
application status from YARN [9] to know the remaining
resource demands of jobs, which are the inputs for the LP-
based scheduler. Our scheduler will be triggered by a task/job
completion event or a predefined time limit.

Before the scheduler, we need to prepare the inputs for the
LP solver such as the duration of a time slot, remaining num-
ber of time slots to the deadline and the remaining resource
demands of the jobs. Among which, deciding the duration of
each time slot is the key step. In our implementations, we
use the greatest common factor (GCF) of the task running
time including map task running time and reduce task running
time as the duration of one time slot. After that, we then can
directly know the number of time slots to the deadline for each
job, which is di in the formulation. We can also calculate the
remaining resource demands sri based on task running time
and the duration of each time slot. For example, if a job only
has four tasks left and the running time of tasks are both 10
seconds, the remaining resource demand should be 4*10/5 if
the duration of each time slot is five seconds. Now we have
all the required inputs for the LP scheduler. We can run it
and obtain the scheduling results for deadline-aware jobs. The
remaining resources will be allocated the ad-hoc jobs if there is
any. Otherwise, the remaining resources will be redistributed to

the deadline-aware jobs using the earliest deadline first (EDF)
strategy to achieve work conservation.

In some cases, it is impossible to schedule all the pending
jobs by their deadlines given the limited resources in the
cluster. In these cases, there will be no feasible solutions for
the LP-based scheduler. Therefore, we propose to schedule the
jobs from the workflows with the earliest deadline first. This
design is the key for the principle of workflow-aware, which
can effectively avoid the cases when most workflows complete
most of the jobs while still miss the deadlines.

We also find out that the deadline slack, which is the gap
between the real deadline and the deadline we use in the LP,
can further reduce the deadline miss rates. For instance, if the
real deadline of the job is 100 seconds and the deadline slack
is set to be 20 seconds, then the deadline we use in the LP-
based scheduler is 80 seconds. The intuition behind the design
of deadline slack is that we may allocate the resources to the
job at the very last minute and we may miss the deadline if the
job takes longer than expected. However, with deadline slack,
we will try to allocate enough resources to the jobs ahead of
the real deadlines and we still have the chance to meet the real
deadline even if it takes longer than expected. We will show
the performance of deadline slack in the evaluations.

VII. EVALUATIONS

In this section, we show the evaluation results of our
approach compared with other algorithms.

A. Experimental Setup

Here we show our experimental setups in the following
aspects.

Cluster configurations: We start 15 VM instances, each
with 4 CPU cores and 15 GB of main memory, in Google
Compute Engine. One instance is the master node and the
remaining 14 nodes are the slave nodes. In each node, 12 GB
of main memory is configured as the memory used by the
node manager. Therefore, we can start up to 6 containers in
each node and 84 containers in the whole cluster.

We use Hadoop Distributed File System (HDFS) as the
underlying file system and the block size is 128 MB. The
HDFS shares the master node and slave nodes with YARN.
The number of replicas is set to be 3.

Workflows and jobs: We have 5 workflows with 90 jobs in
total and different deadlines. On top of that, we have 10 ad-hoc
jobs with random arrival time and job types. Each workflow is
formed by 18 MapReduce jobs with the LIGO topology [16],
which is widely used in workflow related studies. We replace
the jobs in the topology with MapReduce jobs and we use the
same MapReduce jobs if the nodes are representing the same
task types in the original topology.

The MapReduce jobs are selected from the following eight
jobs, which are Classification, HistogramMovie, Histogram-
Ratings, InvertedIndex, SequenceCount, WordCount, SelfJoin
and TeraGen in the PUMA benchmark [17]. For Classification,
HistogramMovie and HistogramRatings, we adopt the movies
dataset in the benchmark. Wikipedia datasets are used for

word processing related applications, which are InvertedIndex,
Sequence-Count and WordCount. SelfJoin takes the generated
the datasets as the input.

The input sizes of jobs are at least 10 GB and we process
more than 1 TB of data in each round of experiments. Each
round takes more than 3 hours to complete in our cluster.

Baselines: We compare our approach named FlowTime with
Morpheus [5], CORA [10], FAIR, FIFO and earliest deadline
first (EDF). All these baselines only care about the job level
performance. To achieve a fair comparison, we consider two
types of job in CORA, which are deadline-critical jobs and
deadline-sensitive jobs. The default utility functions are used
for these two types of jobs.

Metrics: Our metrics are the number of jobs/workflows that
can meet the deadlines and average job turnarounds time of ad-
hoc jobs. Besides these metrics, we also evaluate the scalability
of our approach for both the deadline composition algorithm
and the LP-based scheduler.

B. Experimental Results

In the experiments, we want to answer the following ques-
tions. 1) What is the performance of the scheduler regarding
meeting the deadlines of jobs and workflows? 2) What is
the performance of ad-hoc jobs when they are coexisted
with deadline-aware workflows and jobs? 3) Is the solution
scalable? What is the running time of the algorithms in the
system? Below, we will try to answer the questions one by
one.

1) Deadline-Aware Jobs/Workflows and Ad-hoc Jobs: In
Fig. 4, we show the differences between the completion time
and deadlines, the number of jobs missed the deadlines and
the average job turnaround time of ad-hoc jobs.

More specifically, in Fig. 4(a), we can see that FlowTime
performs the best and all the jobs finish before the deadlines.
However, for the other four algorithms, quite a lot of jobs
missed the deadlines. Especially, for Fair and FIFO, their
performance are the worst because they does not care about
the deadlines in the algorithm. EDF is the best among the
baselines as it sacrifices the performance of ad-hoc jobs and
always schedules the deadline-aware jobs first. However, the
performance of EDF is still worse than our algorithm because
EDF schedules the jobs one by one, which cannot fully utilize
the cluster. CORA considers the performance of the two kinds
of jobs. However, the ultimate objective is to minimize the
max utilities of jobs instead of maximize the number of jobs
that can meet the deadlines or minimizing the average job
turnaround time of ad-hoc jobs. Therefore, CORA can only
obtain a moderate performance across the baselines.

We can further validate the performance of the algorithms
in Fig. 4(b). In this figure, we can see that we meet all the
deadlines of the deadline-aware jobs out of 90 deadline-aware
jobs. The number of jobs that miss the deadlines for the
baselines are 10, 5, 8, and 13, respectively. The reasons for
the performance are as explained above.

Besides the performance of deadline-aware jobs, we also
present the results of ad-hoc jobs in Fig. 4(c) where our

algorithm greatly outperforms the other four algorithms. More
specifically, Fair performs the best among the baselines and
we can reduce the average job turnaround time by 36%. For
other algorithms, our performance is way better. For instance,
the average job turnaround time is 1/2 of CORA, 1/3 of FIFO
and 1/10 of EDF. Again, we can see that EDF trades the per-
formances of ad-hoc jobs for better performance of deadline-
aware jobs. Therefore, it can obtain the fair performance for
deadline-aware jobs while receiving poor performance for ad-
hoc jobs. However, our solution can jointly optimize these
two kinds of jobs and obtain a good performance for both of
the jobs. The benefits originate from the fact that we always
schedule the deadline-aware jobs while minimally impacting
the performance of ad-hoc jobs.

Besides the number of jobs that meet the deadlines, the
number of workflows that can meet the deadlines is also an
important metric to our scheduling system. As we run a total of
90 deadline-aware jobs, which only contain 5 workflows with
each workflow consisting of 18 jobs. The number of workflows
that can meet the deadlines are similar. For instance, in the case
shown in Fig. 4, the number of workflows that can meet the
deadlines are both 5. Even though the performance are similar
given the numbers, our algorithm is more predictable as it can
meet all the deadlines of jobs, which are the milestones, inside
the workflows and is also more friendly to ad-hoc jobs that
may arrive at any time with any size.

2) The Effectiveness of Deadline Slack: Deadline slack is
a very important feature in our system. As we discussed, if
we directly use the deadline of the jobs in the formulation as
it is, there might be some cases that the jobs will be allocated
resources at the very last minute, which can further cause
deadline misses. Therefore, here we compare the performance
with/without deadline slack in Fig. 5 where FlowTime_no_ds
denotes the FlowTime algorithm without the feature of dead-
line slack.

In Fig. 5(a), we can see that the FlowTime meets the dead-
lines for all the deadline-aware jobs while FlowTime_no_ds
misses some deadlines. We can further verify the results in
Fig. 5(b) where 5 jobs miss the deadlines in FlowTime_no_ds.
We can find out that with deadline slack, we can reduce the
chance of missing the deadlines as we try to meet the resource
demands of jobs slightly before the deadlines. In all the figures
without explicit statement, the deadline slack is set to be 60
seconds3.

Using deadline slack, we may allocate resources to the
jobs earlier than the real deadline, which may affect the
performance of ad-hoc jobs. Consequently, we also show the
results of the average job turnaround time of ad-hoc jobs
in Fig. 5(c). In this figure, we can see that the average job
turnaround time are not affected as the we only use a small
amount of time for the deadline slack.

3) The Scalability of Deadline Decomposition Algorithm:
We also record the running time of deadline decomposition

3The deadline slack is set empirically. Optimal settings of the deadline
slack for different workloads are left for the future work.

FlowTime CORA EDF Fair FIFO

Algorithms

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

∆
 (

C
o

m
p

le
ti

o
n

 t
im

e
-

d
ea

d
li

n
e)

 (
s)

(a) ∆ (completion time - deadline).

FlowTime CORA EDF Fair FIFO

Algorithms

0

2

4

6

8

10

12

14

T
h

e
n

u
m

b
er

 o
f

jo
b

s
m

is
se

d
 d

ea
d

li
n

es

 0

10

 5

 8

13

(b) The number of jobs that miss their deadlines.

FlowTime CORA EDF Fair FIFO

Algorithms

0

1000

2000

3000

4000

5000

6000

A
v

er
ag

e
jo

b
 t

u
rn

ar
o

u
n

d
 t

im
e

(s
)

 522.5

1052.0

5333.1

 817.9

1794.3

(c) The average job turnaround time of ad-hoc jobs.

Fig. 4. The performance of the algorithms regarding meeting the deadlines and average job turnaround time.

FlowTime FlowTime_no_ds

Algorithms

-6000

-4000

-2000

0

∆
 (

C
o
m

p
le

ti
o
n
 t

im
e

-
d
ea

d
li

n
e)

 (
s)

(a) ∆ (completion time - deadline).

FlowTime FlowTime_no_ds

Algorithms

0

1

2

3

4

5

T
h
e

n
u
m

b
er

 o
f

jo
b
s

m
is

se
d
 d

ea
d
li

n
es

0

5

(b) The number of jobs that miss their deadlines.

FlowTime FlowTime_no_ds

Algorithms

0

200

400

600

A
v
er

ag
e

jo
b
 t

u
rn

ar
o
u
n
d
 t

im
e

(s
)

522.5 531.1

(c) The average job turnaround time of ad-hoc jobs.

Fig. 5. The effects of deadline slack.

algorithm with different number of nodes and edges where the
runtime is taken as the average over 1000 runs of the deadline
decomposition after 100 warmup runs. The number of nodes
ranges from 10 to 200 and we record 5 data points with similar
number of edges for each number of nodes. The measurements
are conducted on a laptop with Intel Core i7-3630QM 2.4GHz
4-core processor with 8 GB of main memory.

The results are shown in Fig 6. In this figure, we can see
that we can efficiently decompose the deadlines of workflows
to the deadlines of jobs. The runtime of the algorithm grows
slowly with the number of edges and nodes. Even in the case
with 200 nodes and 6000 edges, we can still return the results
within 3 seconds. Note that, each node is a job, therefore the
workflow with 200 jobs is a very big workflow actually. In the
reality, we also do not have thousands of edges, which denote
dependencies among jobs, in most cases.

4) The Solver Latency: There are mainly two parts in
the system, which are deadline decomposition and LP-based
scheduler. Hence, besides the efficiency of deadline decom-
position algorithm, the LP-based scheduler should also be
efficient as it will be triggered whenever a task/job completes.
Otherwise, it will incur high scheduling latency and harm the
performance of jobs.

0

6000

500

1000

200

1500

T
h

e
al

g
o

ri
th

m
 r

u
n

ti
m

e
(m

s)

4000

2000

150

The number of edges

2500

The number of nodes

100

3000

2000
50

0 0

Fig. 6. The runtime of our deadline decomposition algorithm.

We show the running time of the LP-based algorithm in
Fig. 7 with the number of deadline-aware jobs. The capacity
of the cluster is 500 CPU cores and 1TB of main memory. The
number of time slots is set to be 100, which corresponds to
the time span of 1000 seconds as the duration for one slot
is 10 seconds. We use the CPLEX solver on a MacBook

Pro with 2.6 GHz Intel Core i7 CPU and 16 GB of main
memory. The method used in the solver is the network simplex
algorithm. Each case is evaluated several times and the runtime
is averaged.

We can see that our algorithm can delivery the scheduling
results within two seconds for even the large cases. In the
figure, we can see that it can return the results within one
second when the number of jobs is less than 500 and two
seconds when the number of jobs is 900. Even with 1000
jobs, the solver latency is around 2.8 seconds. To note that,
it is so efficient because we transformed the original integer
linear programming problem to a linear programming problem.
The results strongly supports the scalability of our LP-based
scheduler.

200 400 600 800 1000

The number of jobs

0.5

1

1.5

2

2.5

3

S
o
lv

er
 l

at
en

cy
 (

s)

FlowTime

Fig. 7. The running time of the solver.

C. Trace-Driven Simulations

We further compare the performance of our algorithm
with Morpheus [5] with a one-day production trace running
complex hive SQL queries. In the one day trace, there are 60
workflows and 247 MapReduce jobs. The resource demand of
the jobs varies from tens to tens of thousands. In this experi-
ments, we first decompose the deadlines of the workflows to
the deadlines of jobs and then compare the packing efficiency
of our approach with Morpheus because Morpheus can only
handle job-level packing.

Our results is shown in Table II. In this table, we show the
normalized allocation area of all the successfully placed jobs.
The allocation area for each job is calculated by the product
of the number of tasks, the task runtime and the task resource
demand. In this cluster, the total amount of memory varies
from 320 GB to 390 GB and there is one CPU core for every
2 GB of main memory. We can see that we can place all
the jobs with FlowTime with only 320 GB of main memory.
However, Morpheus needs 390 GB of memory to place all
the jobs. In the case with only 320 GB of main memory,
we can allocate 5% more area than Morpheus. The superior

performance of our approach is that we pack all the deadline-
aware jobs altogether instead of one by one as in Morpheus.

TABLE II
THE NORMALIZED ALLOCATION AREA IN DIFFERENT CLUSTER SIZES.

Total memory (GB) 320 360 370 390
Morpheus 6.997 7.000 7.101 7.257
FlowTime 7.257 7.257 7.257 7.257

VIII. RELATED WORK

In this section, we briefly introduce the most related paper
in the scheduling systems for big data processing applications.

The most closely related paper is CORA [10], which was
designed to achieve the max-min fairness of utilities for
jobs with different utility functions. Therefore, in their paper,
the authors also consider both the deadline-critical jobs and
deadline-sensitive jobs, which are called deadline-aware jobs
and latency-sensitive ad-hoc jobs in our case. The major
differences are that we have different scheduling objectives
and we do not assume that we know the job details of ad-
hoc jobs beforehand, which are closer to the real cases in
production clusters [4], [5].

Another paper that worked on workflow scheduling is
WOHA [3], which proposed a progress-based method to
prioritize the workflows dynamically. For this reason, they
need to first simulate the executions of every single workflow
to obtain the relationship between ttd (time to deadline) and
the number of tasks that have completed. However, in the
simulation, they need to specify the amount of resources that
will be allocated to that workflow, which is hard to estimate
given that many other workflows are contenting the resources
in the same cluster. Inaccurate progress estimation may result
in poor performance for meeting the deadlines. In our design,
we do not need to specify the relationship between ttd and
the number of complete tasks. Another difference is that we
also aim to improve the performance of ad-hoc jobs, which is
another important type of workloads in real clusters [4], [5].

There are some papers that both consider recurring deadline-
aware jobs and ad-hoc jobs [4], [5], [6] in the job level. In
other words, only the job level performance were considered
in the paper. Among which, Rayon [4] and Morpheus [5]
are reservation based systems, which are orthogonal to our
approach. Combining the reservation system and our dynamic
scheduling approach is part of our future work. More specifi-
cally, Rayon [4] designed a Reservation Definition Language
(RDL) and formulated the reservation problem as an Integer
Linear Programming (ILP) problem. But a heuristic approach
was adopted for practical issues. The basic idea is to schedule
the deadline-aware jobs as late as possible to leave room for
ad-hoc jobs. In Morpheus [5], the authors first inferred the
deadlines of jobs from historical data and then placed the
jobs one by one while trying to minimize the max resource
utilization of the cluster. The above two papers both focused
on the reservation systems. A scheduling oriented approach
was proposed in TetriSched [6], which aimed to improve the

scheduling performance in heterogeneous environments. All
these work only focused on the job level performance such
as how many jobs meet the deadlines, which leaves potential
performance improvements in the workflow level.

Besides the scheduling systems for the workloads of big
data analytics. Scientific workflow scheduling has been in-
vestigated for a long time in grid computing [7] and public
clouds [18]. In [7], it proposed to minimize the execution
cost for workflows with deadlines. In this paper, a deadline
decomposition algorithm is also proposed for simple DAGs.
Instead, the algorithm in [18] was designed for public clouds
where on-demand resource provisioning and the pay-as-you-
go pricing model are considered for calculating the costs.
However, both of the above-mentioned papers, their workflows
only contain tasks, which have determined running time on a
specific type of computing resources. In our case, each node
in the workflow is a job and the computation time for the
node is undetermined. Moreover, we aim for improving the
scheduling performance regarding meeting the deadlines of
workflows and reducing the average job turnaround time of
ad-hoc jobs instead of minimizing the overall monetary costs.

Job scheduling in geo-distributed big data processing sys-
tems were studied in [12], [19], [20], [21], [22], [23], [24],
[25], [26]. In [26], the authors proposed a data placement and a
reduce task scheduling algorithm to reduce the job completion
time of Spark applications across geo-distributed data centers.
While the ultimate goal in [22] is to reduce the data transfers
across geo-distributed data centers. In the paper, they proposed
a variant min-k-cut algorithm to cut the graph to decide the
task placements in several data centers. Instead of optimizing
job completion time or data transfers, the bandwidth costs
incurred by data transferred across geo-distributed data centers
were optimized in [25] for SQL query related applications. The
above-mentioned approaches only focused on the performance
of one job. The case of multiple jobs was discussed in [21]
where an efficient heuristic approach was proposed to reduce
the average job completion time.

IX. CONCLUSION

In this paper, we have proposed FlowTime to meet the
deadlines of workflows and to minimize the average job
turnaround time of ad-hoc jobs at the same time. We first
design a deadline decomposition algorithm that can efficiently
decompose the deadlines of workflows to the deadlines of
jobs. We then jointly optimize the performance of deadline-
aware jobs and latency-sensitive ad-hoc jobs by scheduling
the deadline-aware jobs while minimally impacting the per-
formance of ad-hoc jobs. To achieve this, we have proposed
to transform the original integer linear programming (ILP)
problem to an efficient equivalent linear programming (LP)
problem that can be efficiently solved by standard LP solvers.
The experimental and trace-driven simulation results strongly
confirm the effectiveness and efficiency of our system.

REFERENCES

[1] “Hadoop,” https://hadoop.apache.org/, accessed: 2017-10-16.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient Distributed Datasets:
A Fault-tolerant Abstraction for In-memory Cluster Computing,” in
Proc. USENIX NSDI, 2012.

[3] S. Li, S. Hu, S. Wang, L. Su, T. Abdelzaher, I. Gupta, and R. Pace,
“Woha: Deadline-Aware Map-Reduce Workflow Scheduling Framework
over Hadoop Clusters,” in Proc. IEEE ICDCS, 2014.

[4] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan,
and S. Rao, “Reservation-based Scheduling: If You’re Late Don’t Blame
Us!” in Proc. ACM SoCC, 2014.

[5] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tu-
manov, J. Yaniv, R. Mavlyutov, Í. Goiri, S. Krishnan, J. Kulkarni
et al., “Morpheus: Towards Automated SLOs for Enterprise Clusters.”
in Proc. USENIX OSDI, 2016.

[6] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter, and
G. R. Ganger, “TetriSched: Global Rescheduling with Adaptive Plan-
ahead in Dynamic Heterogeneous Clusters,” in Proc. ACM Eurosys,
2016.

[7] J. Yu, R. Buyya, and C. K. Tham, “Cost-Based Scheduling of Scientific
Workflow Applications on Utility Grids,” in In Proc. IEEE e-Science
and Grid Computing, 2005.

[8] A. B. Kahn, “Topological Sorting of Large Networks,” Communications
of the ACM, vol. 5, no. 11, pp. 558–562, 1962.

[9] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache Hadoop
Yarn: Yet Another Resource Negotiator,” in Proc. ACM SoCC, 2013.

[10] Z. Huang, B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and D. H.
Tsang, “Need for Speed: Cora Scheduler for Optimizing Completion-
Times in the Cloud,” in Proc. IEEE INFOCOM, 2015.

[11] R. Meyer, “A Class of Nonlinear Integer Programs Solvable by a Single
Linear Program,” SIAM Journal on Control and Optimization, vol. 15,
no. 6, pp. 935–946, 1977.

[12] Z. Hu, B. Li, and J. Luo, “Flutter: Scheduling Tasks Closer to Data
across Geo-distributed Datacenters,” in Proc. IEEE INFOCOM, 2016.

[13] ——, “Time- and Cost- Efficient Task Scheduling Across Geo-
Distributed Data Centers,” IEEE Transactions on Parallel and Dis-
tributed Systems (TPDS), vol. 29, no. 3, pp. 705–718, 2018.

[14] “IBM ILOG CPLEX Optimizer,” https://goo.gl/jyvDuV, accessed: 2017-
10-16.

[15] “Capacity Scheduler,” https://goo.gl/c9GS2p, accessed: 2017-10-16.
[16] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and

K. Vahi, “Characterization of Scientific Workflows,” in IEEE Workshop
on Support of Large-Scale Science., 2008.

[17] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar, “Puma:
Purdue MapReduce Benchmarks Suite,” 2012. [Online]. Available:
https://goo.gl/ccv2tK

[18] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-
Constrained Workflow Scheduling Algorithms for Infrastructure as a
Service Clouds,” Elsevier Future Generation Computer Systems, vol. 29,
no. 1, pp. 158–169, 2013.

[19] I. Cano, M. Weimer, D. Mahajan, C. Curino, and G. M. Fu-
marola, “Towards Geo-Distributed Machine Learning,” arXiv preprint
arXiv:1603.09035, 2016.

[20] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-Distributed Machine Learning
Approaching LAN Speeds,” in Proc. USENIX NSDI, 2017.

[21] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling Jobs Across Geo-
distributed Datacenters,” in Proc. ACM SoCC, 2015.

[22] K. Kloudas, M. Mamede, N. Preguiça, and R. Rodrigues, “Pixida:
Optimizing Data Parallel Jobs in Bandwidth-Skewed Environments,” in
Proc. VLDB, 2015.

[23] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “CLARINET:
WAN-Aware Optimization for Analytics Queries,” in Proc. USENIX
OSDI, 2016.

[24] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and G. Varghese,
“WANalytics: Analytics for a Geo-distributed Data-intensive World,” in
Proc. CIDR, 2015.

[25] A. Vulimiri, C. Curino, B. Godfrey, J. Padhye, and G. Varghese, “Global
Analytics in the Face of Bandwidth and Regulatory Constraints,” in
Proc. USENIX NSDI, 2015.

[26] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, V. Bahl,
and I. Stoica, “Low Latency Geo-Distributed Data Analytics,” in
Proc. ACM SIGCOMM, 2015.

https://hadoop.apache.org/
https://goo.gl/jyvDuV
https://goo.gl/c9GS2p
https://goo.gl/ccv2tK

