
1

Time- and Cost- Efficient Task Scheduling
Across Geo-Distributed Data Centers

Zhiming Hu, Member, IEEE, Baochun Li, Fellow, IEEE, and Jun Luo, Member, IEEE

Abstract—Typically called big data processing, analyzing large volumes of data from geographically distributed regions with machine
learning algorithms has emerged as an important analytical tool for governments and multinational corporations. The traditional
wisdom calls for the collection of all the data across the world to a central data center location, to be processed using data-parallel
applications. This is neither efficient nor practical as the volume of data grows exponentially. Rather than transferring data, we believe
that computation tasks should be scheduled near the data, while data should be processed with a minimum amount of transfers across
data centers. In this paper, we design and implement Flutter, a new task scheduling algorithm that reduces both the completion times
and the network costs of big data processing jobs across geographically distributed data centers. To cater to the specific characteristics
of data-parallel applications, in the case of optimizing the job completion times only, we first formulate our problem as a lexicographical
min-max integer linear programming (ILP) problem, and then transform the ILP problem into a nonlinear program problem with a
separable convex objective function and a totally unimodular constraint matrix, which can be further solved using a standard linear
programming solver efficiently in an online fashion. In the case of improving both time- and cost- efficiency, we formulate the general
problem as an ILP problem and we find out that solving an LP problem can achieve the same goal in the real practice. Our
implementation of Flutter is based on Apache Spark, a modern framework popular for big data processing. Our experimental results
have shown convincing evidence that Flutter can shorten both job completion times and network costs by a substantial margin.

Index Terms—big data processing, task scheduling, cloud computing

F

1 INTRODUCTION

I T has now become commonly accepted that the volume of
data — from end users, sensors, and algorithms alike —

has been growing exponentially, and data is mostly stored
in geographically distributed data centers around the world.
Big data processing refers to applications that apply machine
learning algorithms to process such large volumes of data,
typically supported by modern data-parallel frameworks
such as Spark. Needless to say, big data processing has
become routine in governments and multinational corpo-
rations, especially those in the business of social media and
Internet advertising.

Big data processing over geo-distributed data attracts
much attention recently, and it can provide several bene-
fits. For example, network operators must analyze traffic
in multiple data centers to detect probes from attackers
disguised as normal traffic [2]. Such analysis must extract
global patterns (e.g., frequent IPs) from logs at each site.
Nokia reports that site-local analysis would miss many
devastating attacks [3]. Other use cases for geo-distributed
processing include personal recommendations based on the
geo-distributed user activity logs.

To process large volumes of data that are geographically
distributed, we will traditionally need to transfer all the

• Zhiming Hu and Baochun Li are with the Department of Electrical and
Computer Engineering, University of Toronto, Toronto, Canada, M5S
2E4.
E-mail: zhiming@ece.utoronto.ca, bli@ece.toronto.edu.

• Jun Luo is with the School of Computer Science and Engineering,
Nanyang Technological University, Singapore, 639798.
E-mail: junluo@ntu.edu.sg.

• Preliminary results were presented in Proceedings of the IEEE INFO-
COM, 2016 [1].

Datacenter 1

Datacenter 2 Datacenter 3 Datacenter 4

Map 1

Wide Area 
Network

Map 3Map 2 Map 4

Reduce 1 Reduce 2

Data 2 Data 3 Data 4

Data 1

(a) Traditional approach.

Datacenter 2 Datacenter 3 Datacenter 4

Datacenter 1

Map 1

Wide Area 
Network

Map 3Map 2 Map 4
Reduce 1 Reduce 2

(b) Our approach.

Fig. 1: Processing data locally by moving computation tasks:
an illustrating example.

data to be processed to a single data center, so that they
can be processed in a centralized fashion [4]. However,
at times, such traditional wisdom may not be practically
feasible. First, it may not be practical to move user data
across country boundaries, due to legal reasons or privacy
concerns [5]. Second, the cost, regarding both bandwidth
cost and time, to move large volumes of data across geo-
distributed data centers may become prohibitive as the
amount of data grows exponentially.

It has been pointed out that [4], [5], [6], rather than trans-
ferring data across data centers, it may be a better design to
move computation tasks to where the data is so that data can
be processed locally within the same data center. Of course,
the intermediate results after such processing may still need
to be transferred across data centers, but they are typically
much smaller in size, significantly reducing the cost of data
transfers. An example showing the benefits of processing
big data over geo-distributed data centers is shown in Fig. 1.



2

The fundamental objective, in general, is to minimize the
job completion times in big data processing applications,
by placing the tasks at their respective best possible data
centers. However, previous works (e.g., [4]) were designed
with assumptions that were often unrealistic — such as
bottlenecks do not occur on inter-data center links.

Intuitively, it may be a step towards the right direction
to design an offline optimal task scheduling algorithm,
so that the job completion times are globally minimized.
However, such offline optimization inevitably relies upon a
priori knowledge of task execution times and transfer times
of intermediate results, neither of which is readily available
without sophisticated prediction algorithms. Even if such
knowledge is available, a large data processing job in Spark
may involve a directed acyclic graph (DAG) with hundreds
of tasks; and optimal solutions for scheduling such a DAG
is NP-Complete in general [7].

Besides job completion times, the cost of data transfers
among different data centers is a big concern for some
workloads as the cost could be very high [5]. More specif-
ically, for workloads without network budget constraints,
job completion time is the sole goal, and we can optimize
it directly. While for workloads with network budget con-
straints, achieving the optimal job completion time does not
necessarily result in the optimal cost of data transfers. This
is because the job completion time only cares about the
bottleneck links, while cost savings of data transfers can
only be accomplished by reducing the total data transfers
on all the links across data centers. Thus, in this case, we
aim to optimize the job completion time at a reasonable
bandwidth cost and design a tunable network budget for
those workloads.

In this paper, we develop and implement Flutter, a new
system to schedule tasks across data centers over the wide
area for both time- and cost- efficiency. Our primary focus
when designing Flutter is on practicality and real-world
implementation, rather than on the optimality of our results.
To be practical, Flutter is first and foremost designed as an
online scheduling algorithm, making adjustments on-the-fly
based on the current job progress. Flutter is also intended
to be stage-aware: it minimizes the completion time of each
stage in a job, which corresponds to the slowest of the
completion time of the constituent tasks in the stage.

Practicality also implies that our algorithms in Flutter
would need to be efficient at runtime. Our problems of
stage-aware online scheduling can be formulated as lex-
icographical min-max integer linear programming (ILP)
problems. A highlight of this paper is that, for the case of
without network budget constraints, after transforming the
problem into a nonlinear program, we show that it has a
separable convex objective function and a totally unimod-
ular constraint matrix, which can then be solved using a
standard linear programming solver efficiently, and in an
online fashion. For the other case of considering the network
budget constraints, we also show that it can produce near
optimal scheduling results by solving a linear programming
(LP) problem.

To demonstrate that it is amenable to practical imple-
mentations, we have implemented Flutter based on Apache
Spark, a modern framework for big data processing. Our ex-
perimental results on a production wide-area network with

geo-distributed servers have shown convincing evidence
that Flutter can shorten job completion times and reduce
network costs by a substantial margin.

2 FLUTTER: MOTIVATION AND PROBLEM FORMU-
LATION

In this section, we first show the backgrounds and moti-
vations of the proposed algorithms. We then illustrate our
mathematic models for the problems. Finally, we formally
formulate the problems for workloads with/without net-
work budget constraints, respectively.

2.1 Background and Motivation

Here we show some characteristics of inter-data center
networks regarding the bandwidths and pricing for data
transfers, which serve as our motivations.

2.1.1 Bandwidths Across Data Centers
To motivate our work, we begin with a real-world ex-
periment, with Virtual Machines (VMs) initiated and dis-
tributed in four representative regions in Amazon EC2: EU
(Frankfurt), US East (N. Virginia), US West (Oregon), and
Asia Pacific (Singapore). All the VM instances we used are
m3.xlarge, with four cores and 15 GB of main memory
each. To illustrate the available capacities on inter-data
center links, we have measured the bandwidths available
between VMs across data centers using the iperf utility
and our results are shown in Table 1.

TABLE 1: Available bandwidths between VMs across geo-
graphically distributed data centers as of July 2015.

EU US-East US-West Singapore
EU 946 Mbps 136 Mpbs 76.3 Mbps 49.3 Mbps
US-East - 1.01 Gbps 175 Mbps 52.6 Mbps
US-West - - 945 Mbps 76.9 Mbps
Singapore - - - 945 Mbps

From this table, we can make two observations with
convincing evidence. On the one hand, when VMs in the
same data center communicate with each other across the
intra-data center network, the available bandwidth is con-
sistently high, at around 1 Gbps, which is sufficient for
typical Spark-based data-parallel applications [8]. On the
other hand, bandwidths between VMs across data centers
are an order of magnitude lower and vary significantly for
different inter-data center links between VMs. For example,
the highest bandwidth in the table is 175 Mbps, while the
lowest is only 49 Mbps.

Our observations have clearly implied that transfer times
of intermediate results across data centers can quickly be-
come the bottleneck when it comes to job completion times
if we run the same data-parallel application across different
data centers. Scheduling tasks carefully to the best possible
data centers is, therefore, important to utilize available inter-
data center bandwidth better; and more so when the inter-
data center bandwidths are lower and more divergent. Flut-
ter is first and foremost designed to be network-aware, in that
tasks can be scheduled across geo-distributed data centers
with the awareness of available inter-data center bandwidth.



3

2.1.2 Bandwidth Costs Across Data Centers
Besides the differences of bandwidths across data centers,
the bandwidth pricing is also an important factor for work-
loads with network budget constraints. Let us first look
at the pricing of data transfers among different data cen-
ters. We show the pricing for data transfers of Microsoft
Azure [9] and Amazon Web Service (AWS) [10] in Table 2
and Table 3, respectively. The units for the pricing are both
US dollars/Gigabytes. We should also note that the pricing
is only for outbound traffic to other data centers. Inbound
traffic is free for almost all the public cloud providers like
AWS, Azure and Google Compute Engine [11].

TABLE 2: Bandwidth costs across geographically distributed
data centers in Azure [12].

US and EU Asia Pacific, Japan and Australia Brazil
0.087 0.138 0.181

TABLE 3: Bandwidth costs across geographically distributed
data centers in amazon web service (AWS) [13].

US and EU Singapore and Tokyo Sydney San Paulo
0.02 0.09 0.14 0.16

Based on the tables, we can clearly see that the network
pricing would vary a lot in both of the cloud platforms.
More specifically, in Azure, the most expensive pricing of
data transfers among data centers per GB is more than two
times to the cheapest pricing. Moreover, the most expensive
pricing is eight times to the cheapest one in AWS. Both
of the cases strongly imply that we should also avoid
scheduling the tasks to data centers that would incur high
costs of data transfers. In other words, a wise scheduling
decision should also consider the pricing differences and
the pricing policies of data transfers among data centers
besides the differences of bandwidths among data centers
if there are network budget constraints.

To illustrate that the best scheduling choice for task/job
completion time would not necessarily result in the lowest
cost of data transfers, we provide a simple motivating
example in Fig. 2. In this example, we can see that if we
only consider the task completion time, it would take the
same amount of time to get all its inputs. Then it would
achieve the same task completion time because no matter
where we schedule the task, we need to transfer the other
input from the other data center and the size of inputs are
the same. However, we can easily see that transferring the
input from data center 1 to data center 2 is much more
expensive than the other way around. Therefore, scheduling
the task to data center 1 is apparently a better solution if we
also take the cost for data transfers among data centers into
consideration. This motivation example strongly implies the
need of considering the network budget and pricing policies
in task scheduling especially for workloads with network
budget constraints.

2.2 The Model
To formulate the problem that we wish to solve with the
design of Flutter, we revisit the current task scheduling
disciplines in existing data-parallel frameworks that support

Datacenter 1

Input 1 
(50Mbytes)

100Mbps

Pricing for data transfers is $0.01/GB

Pricing for data transfers is $0.08/GB

Task

Datacenter 2

Input 2 
(50Mbytes)

?

Fig. 2: A motivating example. Schedule the tasks when we
should both consider the bandwidth and costs for transfer-
ring data. The task needs two inputs: input 1 and input 2.

big data processing, taking Spark [14] as an example. In
Spark, a job can be represented by a Directed Acyclic Graph
(DAG) G = (V, E). Each node v ∈ V represents a task; each
directed edge e ∈ E indicates a precedence constraint, and
the weight of e represents the transfer time of intermediate
results from the source node to the destination node of e.

Scheduling all the tasks in the DAG to some worker
nodes — while minimizing the completion time of the job
— is NP-Complete in general [7], and is neither efficient
nor practical. Rather than scheduling all the tasks together,
Spark schedules ready tasks stage by stage in an online
fashion. As it is a much more convenient way of designing
a task scheduler, Flutter follows suit and only schedules the
tasks within the same stage to geo-distributed data centers,
rather than considering all the ready tasks in the DAG1.
Here we denote the set of the index of tasks in a stage by
N = {1 . . . n} and the set of the index of data centers by
D = {1 . . . d}. Therefore, the constraints in the problem can
be listed as below.

Task placement constraints: xij denotes whether i-th
task will be scheduled to the j-th data center. xij = 1
indicates the assignment of the i-th task to j-th data center;
otherwise xij = 0.

d∑
j=1

xij = 1, ∀i ∈ N , (1)

xij ∈ {0, 1}, ∀i ∈ N , ∀j ∈ D. (2)

The first constraint in Eq. (1) implies that each task should
be scheduled to only one data center. The second constraint
shows that xij is binary.

Capacity constraints: The number of tasks assigned
to the j-th data center should not exceed the maximum
number of tasks fj that can be scheduled on the existing
VMs in that data center. This constraint is shown in Eq. (3).
Though it is indeed conceivable to launch new VMs on-
demand, it takes around 100 seconds for most of the types
of instances [15], in reality, to initiate and start a new VM,
making it far from practical. The total number of tasks that

1. This approach may result in sub-optimal performance regarding
the job completion time of the whole job.



4

can be scheduled in one data center depends on the total
number of CPU cores available in the data center and the
number of cores needed for each task in Spark.

n∑
i=1

xij ≤ fj , ∀j ∈ D. (3)

Transfer time constraints: We compute the transfer time
of intermediate data if the i-th task is scheduled on the j-
th data center in Eq. (4). cij is the transfer time to receive
all the intermediate results. si and dk represent the number
of inputs for the i-th task and the index of the data center
that has the k-th input, respectively. For example, let mdkj

denote the amount of data that need to be transferred from
the dk-th data center to the j-th data center if the i-th task is
scheduled to the j-th data center. If dk = j, then mdkj = 0.
We let buv to denote the bandwidth between the u-th data
center and the v-th data center, and assume that the network
bandwidth Bd×d = {buv| u, v = 1 . . . d} across all the data
centers can be measured and is stable for a few minutes [4].
We can then compute the maximum transfer times for each
possible way of scheduling the i-th task.

cij = max
k∈si

(mdkj/bdkj), ∀i ∈ N , ∀j ∈ D. (4)

Bandwidth cost constraints: Eq. (5) is the constraint to
limit the bandwidth cost for the workloads that have budget
constraints. bcostij denotes the bandwidth cost incurred by
scheduling the i-th task to the j-th data center, and it can
be calculated by the summation of the costs of obtaining
all the intermediate inputs where pdkj is the pricing for data
transfers from dk-th data center to j-th data center as shown
in (6). opt is the optimal bandwidth cost in the scheme
optimized for bandwidth cost. θ (θ ≥ 1) is designed to tune
the budget. If θ = 1.0, it implies a strict bandwidth budget,
and θ > 1, otherwise. As shown in Eq. (5), we propose to
set the cost limits based on the optimal bandwidth cost and
a tunable variable θ.

n∑
i=1

d∑
j=1

(xij × bcostij) ≤ θ · opt, (5)

bcostij =
∑
k∈si

mdkj · pdkj , ∀i ∈ N , ∀j ∈ D. (6)

The problem to obtain the optimal bandwidth cost opt is
formulated as follows:

minimize opt =
n∑
i=1

d∑
j=1

(xij · bcostij) (7)

s.t. (1), (2), (3), (6).

This formulation shows a very straightforward LP prob-
lem, while it can help calculate the optimal bandwidth
cost for each stage. Each time, we will first compute the
optimal bandwidth cost for each stage, and then feed it to
the constraints in Eq. (5).

2.3 Problem Formulation
Given the model, we know that we schedule the tasks and
optimize the performance stage by stage. There is, however,
one more complication when tasks within the same stage

are to be scheduled. The complexity comes from the fact
that the completion time of a stage in data-parallel jobs
is determined by the completion time of the slowest task
in that stage. Without awareness of the stage that a task
belongs to, it may be scheduled to a data center with a
much longer transfer time to receive all the intermediate
results needed (due to capacity limitations on inter-data
center links), slowing down not only the stage it belongs
to, but the entire job as well.

More formally, Flutter should be designed to solve a
network-aware and stage-aware online reduce task scheduling
problem, formulated as a lexicographical min-max integer
linear programming (ILP) problem P1 as follows:

lexmin
X

max
i,j

(xij · (cij + eij)) (8)

s.t. (1), (2), (3), (4).

where cij is the transfer time to receive all the intermediate
results for task i, computed in Eq. (4). eij denotes the
execution time of the i-th task in the j-th data center. Our
objective is to minimize the maximum task completion time
within a stage, including both the network transfer time and
the task execution time. In other words, we optimize the
stage completion times.

By far, we have formulated the problem for workloads
without network budget constraints. However, there are
some other workloads that only aim to optimize the per-
formance given certain network budget constraints. To this
end, we also formulate the problem for workloads with
network budget constraints as P2:

lexmin
X

max
i,j

(xij · (cij + eij)) (9)

s.t. (1), (2), (3), (4), (5), (6).

3 TASK SCHEDULING ACROSS GEO-DISTRIBUTED
DATA CENTERS

Given the problem formulations of our task scheduling
problems across geo-distributed data centers for workloads
with/without network budget constraints, we now study
how to solve the problems efficiently, which is the key for
the practicality of Flutter in the real data processing systems.

3.1 Workloads without Network Budget Constraints
In this section, we show how we solve the problem P1
for workloads without network budget constraints. More
specifically, we first propose to transform the lexicographi-
cal min-max integer problem in the formulation into a par-
ticular class of nonlinear programming problem. We then
further change this special class of nonlinear programming
problem into a linear programming problem (LP) that can be
solved efficiently with standard LP solvers.

3.1.1 Transform into a Nonlinear Programming Problem
The special class of nonlinear programs that can be con-
verted into an LP has two characteristics [16], [17], a sep-
arable convex objective function and a totally unimodular
constraint matrix. We will show how we change our original
formulation to meet these two conditions.



5

3.1.1.1 Separable Convex Objective Function: A
function is separable convex if it can be represented as
a summation of multiple convex functions with a single
variable. To make this transformation, we first define the
lexicographical order. Let p and q represent two integer
vectors of length k. We define −→p and −→q as the sorted
p and q with non-increasing order, respectively. If p is
lexicographically less than q, represented by p ≺ q, it means
that the first non-zero item of −→p −−→q is negative. Then if p
is lexicographically no greater than q, denoted as p � q, it
is equivalent to p ≺ q or −→p = −→q .

Our objective function is to find a vector that is lexico-
graphically minimal over all the vectors in the feasible re-
gion with their components rearranged in a non-increasing
order. In our problem, if p is lexicographically less than q,
then vector p is a better solution for our lexicographical
min-max problem. However, directly finding the lexico-
graphically minimal vector is not an easy task, we discover
that we can use a summation of exponents to preserve the
lexicographical order among vectors. Consider the convex
function g : Zk → R that has the form of

g(α) =
k∑
i=1

kαi ,

where α = {αi | i = 1 . . . k} is an integer vector with length
k. We prove that we can preserve the lexicographical order
of vectors through g : Zk → R by the following lemma2.

Lemma 1. For p, q ∈ Zk, p � q ⇐⇒ g(p) ≤ g(q).

Proof: We first prove that p ≺ q =⇒ g(p) < g(q).
We assume that the index of the first positive element of
−→q − −→p is r. As both vectors only have integral elements,
−→q r > −→p r implies −→q r ≥ −→p r + 1. If r = k, this part is
directly proved. Here we consider the case for r ≤ k − 1.
Then we have:

g(q)− g(p) = g(−→q )− g(−→p ) (10)

=
k∑
i=1

k
−→q i −

k∑
i=1

k
−→p i (11)

=
k∑
i=r

k
−→q i −

k∑
i=r

k
−→p i (12)

≥
k∑
i=r

k
−→q i − k × k

−→p r (13)

= (k
−→q r − k

−→p r+1) +
k∑

i=r+1

k
−→q i (14)

≥
k∑

i=r+1

k
−→q i (15)

> 0 (16)

Hence the first part is proved.
We then show g(p) < g(q) =⇒ p ≺ q and we assume

r is the index of first non-zero element in −→q − −→p , then

2. Since scaling the coefficients of xij would not change the optimal
solution, we can always make the coefficients to be integers.

−→p i = −→q i for all i < r. Here we first consider the case when
r ≥ 2.

g(q)− g(p) = g(−→q )− g(−→p ) (17)

=
k∑
i=1

k
−→q i −

k∑
i=1

k
−→p i (18)

≤
r−1∑
i=1

k
−→q i + (k + 1− r)× k

−→q r (19)

−
r−1∑
i=1

k
−→p i − k

−→p r (20)

≤ (k + 1− r)× k
−→q r − k

−→p r (21)

We can easily see that this inequation also holds when r = 1.
Therefore if g(q) − g(p) > 0, then we have (k + 1 − r) ×
k
−→q r − k

−→p r > 0. For r = 1, it implies −→q r + 1 > −→p r . If
−→q r < −→p r, the previous inequation would not hold. −→q r
also does not equal −→p r as r is the index of the first non-
zero item in −→q − −→p . We then have −→q r > −→p r . For r > 1,
(k+1−r)×k−→q r−k−→p r > 0 implies logk(k+1−r)+−→q r > −→p r .
Because r > 1, logk(k + 1− r) is less than 1 and −→q r 6= −→p r
because r is the index of first non-zero item in −→q −−→p . Thus
we can also have −→q r > −→p r when r > 1. In sum, −→q r > −→p r
for all r ≥ 1. As a result, it can be concluded that p ≺ q.

Regarding the equations, if −→p = −→q , it is straightforward
to see that g(q) = g(p). Now if g(q) = g(p), let us prove
whether we have −→p = −→q . Without loss of generality, we
can assume that p ≺ q when g(q) = g(p). While if p ≺ q,
then we have g(p) < g(q) based on previous proofs, which
contradicts to the assumption. Thus if g(q) = g(p), we also
have −→p = −→q .

Let h(X) denote the vector in the objective function of
our problem in Eq. (8). Then our problem can be denoted
by lexmin

X
(max h(X)). Based on Lemma 1, the objec-

tive function of our problem can be further replaced by
min g(h(X)), which is

min
n∑
i

d∑
j

kxij ·(cij+eij), (22)

where k equals nd, which is the length of vectors in the
solution space of the problem in our formulation.

We can clearly see that each term of summation in
Eq. (22) is an exponential function, which is convex. There-
fore this new objective function consists of a separable
convex objective function. Now let us see whether the
coefficients in the constraints of our formulation can form
a totally unimodular matrix.

3.1.1.2 Totally Unimodular Constraint Matrix: A
totally unimodular matrix is an important concept as it
can quickly determine whether an LP is integral, which
means that the LP would only have integral optimum if
it has any. For instance, if a problem has the form of
{min cx | AX ≤ b, x > 0}, where A is a totally unimodular
matrix and b is an integral vector, then the optimal solutions
for this problem must be integral. The reason is that in
this case, the feasible region {x| AX ≤ b, x > 0} is
an integral polyhedron, which has only integral extreme
points. Hence in our case, if we can prove that the coeffi-
cients in the constraints of our formulation form a totally



6

unimodular matrix, then our problem would only have
integral solutions. We prove that the constraint matrix in
our problem formulation forms a totally unimodular matrix
by the following lemma.

Lemma 2. The coefficients of the constraints (1) and (3) form
a totally unimodular matrix.

Proof: A totally unimodular matrix is a m × r matrix
A = {aij | i = 1 . . .m, j = 1 . . . r} that meets the following
two conditions. First, all of its elements must be selected
from {-1, 0, 1}. It is straightforward to see that all the
elements in the coefficients of our constraints are 0 or 1,
so it meets the first condition. The second condition is that
for any subset of rows I ∈ {1 . . .m}, it can be separated
into two sets I1, I2 such that ‖

∑
i∈I1 aij −

∑
i∈I2 aij‖ ≤ 1.

In our formulation, we can take the variable X = {xij | i =
1 . . . n, j = 1 . . . d} as a nd × 1 vector, then we can write
down the constraint matrix in (1) and (3), respectively. We
can then find out that for these two matrices, the sum over
all the rows in each matrix both equal a 1 × nd vector
whose entries are all equal to 1. For any subset I of the
matrix formed by the co-efficients in constraint (1) and (3),
we can always assign the rows related to (1) to I1, and the
rows related to (3) to I2. In this case, as both

∑
i∈I1 aij and∑

i∈I2 aij are smaller than a 1 × nd vector with nd 1s, we
will always have ‖

∑
i∈I1 aij −

∑
i∈I2 aij‖ ≤ 1. Then this

lemma got proven.

3.1.2 Transform the Nonlinear Programming Problem into
an LP

We have transformed our integer programming problem
into a nonlinear programming with a separable convex
function. We have also shown that the coefficients in the
constraints of our formulation form a totally unimodu-
lar matrix. Now we can further transform the nonlinear
programming problem into an LP based on the method
proposed in [16], [17]. In this transformation, the optimal
solutions would not change. The fundamental transforma-
tion is named λ-representation as listed below.

f(x) =
∑
h∈P

f(h)λh (23)∑
h∈P

hλh = x (24)∑
h∈P

λh = 1 (25)

∀λh ∈ R+,∀h ∈ P (26)

where P is the set that consists of all the possible values of
x. Therefore in our case, P = {0, 1}. As we can see that, it
introduces |P| extra variables λh in the transformation and
makes the original function to be a new function over λh
and x. As indicated in the formulation, λh could be any pos-
itive real numbers and x equals the weighted combination
of λh. By applying λ-representation to (17), we can easily
get the new form of our problem formulation, which is an
LP as listed below:

min
X,λ

n∑
i=1

d∑
j=1

(
∑
h∈P

k(cij+eij)·hλhij) (27)

s.t.
∑
h∈P

hλhij = xij , ∀i ∈ N , ∀j ∈ D (28)∑
h∈P

λhij = 1, ∀i ∈ N , ∀j ∈ D (29)

λhij ∈ R+, ∀i ∈ N , ∀j ∈ D, ∀h ∈ P (30)
(1), (2), (3), (4).

As P = {0, 1}, we can further expand and simplify the
above formulation to get our final formulation as follows:

min
X,λ

n∑
i=1

d∑
j=1

((k(cij+eij) − 1) · λ1ij) (31)

s.t. λ1ij = xij , ∀i ∈ N , ∀j ∈ D (32)
(1), (2), (3), (4), (30).

We can clearly see that it is an LP with only nd variables,
where n is the number of tasks and d is the number of data
centers. As it is an LP over X , it can be efficiently solved
by standard linear programming solvers like Breeze [18] in
Scala [19], and because the coefficients in the constraints
form a totally unimodular matrix, its optimal solutions for
X are integral and the same as the solutions to the original
ILP problem P1.

3.2 Workloads with Network Budget Constraints

For the workloads with network budget constraints, we
are not able to transform the problem P2 to a linear pro-
gramming problem. In our implementation, we solve the
ILP problem P2 directly to obtain the scheduling results.
Later we will show that we can achieve near optimal job
completion time and network cost even when θ = 1.0,
which means that we can directly calculate the scheduling
results by solving the LP problem in Eq. (7) instead of
solving the ILP problem in P2. We will illustrate the details
in the experimental results.

4 DESIGN AND IMPLEMENTATION

After we have discussed how our task scheduling problem
can be solved efficiently, we are now ready to see how we
implement it in Spark, a modern framework popular for big
data processing.

Spark is a fast and general distributed data analysis
framework. Different from disk-based Hadoop [20], Spark
would cache a part of the intermediate results in memory.
Thus it would greatly speed up iterative jobs as it can
directly obtain the outputs of the previous stage from main
memory instead of the disk. Now as Spark becomes more
and more mature, several projects designed for different
applications are built upon Spark such as MLlib, Spark
Streaming and Spark SQL. All these projects rely on the core
module of Spark, which contains several fundamental func-
tionalities of Spark including Resilient Distributed Datasets
(RDDs) and scheduling.



7

Return Task 
Description

Task Scheduler

FlutterScheduler 
Backend

DAG Scheduler

TaskSet
Manager

MapOutputTracker

Make Offer

Submit Tasks

TaskSet

Set Output Information of 
Map Tasks if applicable

Find Task Description 
with Index of Task

Return Task 
Description

Submit Tasks

Fig. 3: The design of Flutter in Spark.

To incorporate our scheduling algorithm in Spark, we
override the scheduling modules to implement our algo-
rithm. From the top of the view, after a job is submitted
in Spark, the job would be transformed into a DAG of
tasks and handled by the DAG scheduler. Then, the DAG
scheduler would first check whether the parent stages of the
final stage are complete. If they are, the final stage is directly
submitted to the task scheduler for the task scheduling.
If not, the parent stages of the final stage are submitted
recursively until the DAG scheduler finds a ready stage.

The detailed architecture of our implementation can be
seen in Fig. 3. As we can observe from the figure, after the
DAG scheduler finds a ready stage, it would create a new
TaskSet for that ready stage. Here if the TaskSet is a set
of reduce tasks, we would first get the output information
of the map tasks from the MapOutputTracker, and then
save it to this TaskSet. Then this TaskSet would be sub-
mitted to the task scheduler and added to a list of pending
TaskSets. When the TaskSets are waiting for resources,
the SchedulerBackend, which is also the cluster manager,
would offer some free resources in the cluster. After receiv-
ing the resources, Flutter would pick a TaskSet in the queue,
and determine which task should be assigned to which
executor. It also needs to interact with TaskSetManager to
obtain the description of the tasks, and later return these
task descriptions to the SchedulerBackend for launching
the tasks. During the entire process, getting the outputs of
the map tasks and the scheduling process are the two key
steps; in what follows, we will present more details about
these two steps.

4.1 Obtaining Outputs of the Map Tasks

Flutter needs to compute the transfer time/cost to obtain all
the intermediate results for each reduce task if it is sched-
uled to a data center. Therefore, obtaining the information
about the outputs of map tasks including both the locations
and the sizes is a key step towards our goal. Here we will
first introduce how we obtain the information about the
map outputs.

A MapOutputTracker is designed in the driver of Spark
to let reduce tasks know where to fetch the outputs of the
map tasks. It works as follows. Each time when a map task
finishes, it would register the sizes and the locations of its
outputs to the MapOutputTracker in the driver. Then if the
reduce tasks want to know the locations of the map outputs,

it will send messages to the MapOutputTracker directly to
get the information.

In our case, we can obtain the output informa-
tion of map tasks in the DAG scheduler through the
MapOutputTracker, as the map tasks have already reg-
istered its output information to the MapOutputTracker.
We then save the output information of map tasks to the
TaskSet of reduce tasks before submitting the TaskSet to
the task scheduler. Therefore the TaskSet would carry the
output information of the map tasks and be submitted to
the task scheduler for task scheduling.

4.2 Task Scheduling with Flutter
The task scheduler serves as a “bridge” that connects tasks
and resources (executors in Spark). On the one hand, it will
keep receiving TaskSets from the DAG scheduler. On the
other hand, it would be notified if there are newly available
resources by the SchedulerBackend. For instance, each
time when a new executor joins the cluster or an executor
has finished one task, it would offer its resources along with
its hardware specifications to the task scheduler. Usually,
multiple offers from several executors would reach the task
scheduler at the same time. After receiving these resource
offers, the task scheduler then starts to use its scheduling
algorithm to the pick up the right pending tasks that are
most suited to the offered resources.

In our task scheduling algorithm, after we receive the
resource offers, we first pick a TaskSet in the sorted list
of TaskSets and check whether it has shuffle dependency.
In other words, we want to check whether tasks in this
TaskSet are reduce tasks. If they are, we need to do two
things. The first is to get the output information of the
map tasks and calculate the transfer times for each possible
scheduling decision. We do not consider the execution times
of the tasks in the implementation because the execution
times of the tasks in a stage are almost uniform on homoge-
neous VMs, which will not affect the scheduling results as
our problem is a min-max problem. Similar strategy is also
adopted in [4], [21]. The second is to figure out the amount
of available resources on each data center through received
resource offers. After these two steps, we feed the informa-
tion to our linear programming solver, and the solver would
return an index of the most suitable data center for each
reduce task. Finally, we randomly choose a host that has
enough resource for the task on that data center and return
the task description to SchedulerBackend for launching the
task. If the TaskSet does not have shuffle dependency, the
default delay scheduling [22] would be adopted. Thus each
time, when there are new resource offers, and the pending
TaskSet is a set of reduce tasks, Flutter would be invoked.
Otherwise, the default scheduling strategy is used.

For workloads with network budget constraints, the
whole procedure is similar. The differences exist in two
aspects. First, in this case, we need to calculate the potential
cost incurred by the data transfers for each possible schedul-
ing. Second, we need to solve the optimization problem to
obtain the optimal bandwidth cost, which would be fed
to the final optimization problem for scheduling decisions.
After we decide which data center to place each task,
other details are same with the case for workloads without
network budget constraints as we stated above.



8

5 PERFORMANCE EVALUATION

In this section, we will present our experimental setup in
geo-distributed data centers and detailed experiment results
on real-world workloads.

5.1 Experimental Setup
We first describe the testbed we used in our experiments,
and then briefly introduce the applications, baselines, and
metrics used throughout the evaluations.

Private Testbed: Our experiments are conducted in 6
data centers with a total of 25 instances, among which
two data centers are in Toronto. The other data centers are
located at various academic institutions: Victoria, Carleton,
Calgary and York. All the instances used in the experiments
are m.large, which has four cores and 8 GB of main memory.
The bandwidth capacities among VMs in these regions are
measured by iperf and are shown in Table 4. The data
centers in Ontario are interconnected through dedicated
1GE links. Hence we can see in the table that the bandwidth
capacities between the data centers in Toronto, Carleton and
York are relatively high, while they are still lower than the
bandwidth capacities within the same data center.

TABLE 4: Available bandwidths between VMs across geo-
distributed data centers as of July 2015 (Mbps).

Tor-1 Tor-2 Victoria Carleton Calgary York
Tor-1 1000 931 376 822 99.5 677
Tor-2 - 1000 389 935 97.1 672
Victoria - - 1000 381 82.5 408
Carleton - - - 1000 93.7 628
Calgary - - - - 1000 95.6
York - - - - - 1000

Note: “Tor” is short for Toronto. Tor-1 and Tor-2 are two data
centers located at Toronto.

EC2 Deployment: Our cluster on Amazon EC2 consists
of 16 instances across five regions (N. Virginia, N. California,
Frankfurt, Singapore and Sydney). All the instances are
m3.xlarge and each instance has four vCPUs and 15GB of
main memory. The bandwidths between VMs across regions
can be found in Table 5. The pricing (USD/GB) for sending
data across regions in those 5 regions are 0.02, 0.02, 0.02, 0.09
and 0.16 respectively. As we can see that, the bandwidth cost
in Sydney could be 8 times to the cost of the regions in the
US and Europe.

TABLE 5: Available bandwidths between VMs across geo-
distributed data centers on EC2 as of Oct. 2016 (Mbps).

US-East US-West EU Singapore Sydney
US-East 1105.9 90.0 67.1 21.2 14.8
US-West - 1105.9 69.2 38.2 72.6
EU - - 1105.9 28.4 31.8
Singapore - - - 1105.9 64.7
Sydney - - - - 1105.9

HDFS: The distributed file system used in our geo-
distributed cluster is the Hadoop Distributed File System
(HDFS) [20]. We use one instance as the master node for
both HDFS and Spark. All the other nodes are served as
datanodes and worker nodes. The block size in HDFS is
128MB, and the number of replications is 3.

Applications: We deploy three applications on Spark.
They are WordCount, PageRank [23] and GraphX [24].

• WordCount: WordCount calculates the frequency of
every single word appearing in a single or batch of
files. It would first calculate the frequency of words
in each partition, and then aggregate the results in
the previous step to obtain the final result. We choose
WordCount because it is a fundamental application
in distributed data processing and can process the
real-world data traces such as Wikipedia dumps.

• PageRank: It computes the weights for websites
based on the amount and quality of links that point
to the websites. This method relies on the assumption
that a website is important if many other important
websites are linking to it. It is a typical data process-
ing application with multiple iterations. We use it for
calculating both the ranks for the websites and the
impact of users in social networks.

• GraphX: GraphX is a module built upon Spark for
parallel graph processing. We run the application
LiveJournalPageRank as the representative application
on top of GraphX. Even though the application is
also named “PageRank,” the computation module
is completely different on GraphX. We choose it
because we also wish to evaluate Flutter on systems
built upon Spark.

Inputs: For WordCount, we use 10GB of Wikipedia
dump as the input. For PageRank, we use an unstructured
graph with 875713 nodes and 5105039 edges released by
Google [25] in the private testbed and a directed graph
with 1632803 nodes and 30622564 edges from Pokec online
social network [26] in the case of EC2 deployment. For
GraphX, we adopt a directed graph in LiveJournal online
social network with 4847571 nodes and 68993773 edges [25],
where LiveJournal is a free online community.

Baseline: In the private testbed, we compare our task
scheduler with delay scheduling [22], which is the default
task scheduler in Spark. In the Amazon EC2 deployment,
we also compare our scheduler with Iridium [4] 3. In this
case, we denote flutter for workloads without network bud-
get constraints as Flutter w/o Cost Awareness and the other
algorithm as Flutter w/ Cost Awareness.

Metrics: The first two metrics used are job completion
times and stage completion times of the three application.
As the bandwidths among different data centers are ex-
pensive regarding cost, so we also take the amount of
traffic transferred among different data centers and the costs
incurred by the data transfers as two other metrics in the
Amazon EC2. Moreover, we also report the running times
of solving the LP in different scales to show the scalability
of our approach.

5.2 Results on the Testbed
In the experiments on the testbed, we examine the perfor-
mance of Flutter for workloads without network budget
constraints. Here we wish to first answer the following
questions. (1) What are the benefits of Flutter regarding job

3. We implement the LP problem for the reduce task scheduling in
this paper.



9

WordCount PageRank GraphX

T
im

e
 (

s
)

0

100

200

300

400

500

600

700

800

900
Flutter
Spark

Fig. 4: The job computation times of the three workloads.

completion times, stage completion times, as well as the
volume of data transferred among different data centers?
(2) Is Flutter scalable regarding the times to compute the
scheduling results, especially for short-running tasks?

5.2.1 Job Completion Times
We plot the job completion times of the three applications
in Fig. 4. As we can see, completion times of all three ap-
plications with Flutter have been reduced. More specifically,
Flutter reduced the job completion time of WordCount and
PageRank by 22.1% and 25%, respectively. The completion
time of GraphX is also reduced by more than 20 seconds.
There are primarily two reasons for the improvements.
The first is that Flutter can adaptively schedule the reduce
tasks to a data center that would cost the least amount of
transfer times to get all the intermediate results. Thus it
can start the tasks as soon as possible. The second is that
Flutter would schedule the tasks in the stage as a whole.
Therefore, it can significantly mitigate the stragglers — the
slow-running tasks in that stage — and further improve the
overall performance.

It seems that the improvements regarding job comple-
tion times on GraphX are small in this case, which is because
there are three data centers that have high bandwidths with
each other and delay scheduling may also schedule the tasks
in those three data centers. Even though the job completion
time is not reduced significantly for GraphX applications,
we will show that Flutter would significantly reduce the
amount of traffic transferred across different data centers
for GraphX applications.

5.2.2 Stage Completion Times
As Flutter schedules the tasks stage by stage, we also plot the
completion times of stages in these applications in Fig. 5. In
this way, we can have a closer view of the scheduling per-
formance of both our approach and the default scheduler in
Spark, by checking the performance gap stage by stage and
finding out how the overall improvements of job completion
times are achieved. We will explain the performance of the
three applications one by one.

For WordCount, we repartition the input datasets as the
input size is large. Therefore it has three stages: reparti-
tion, reduceByKey (map), and reduce. In the first stage,
as it is not a stage with shuffle dependency, we use the
default scheduler in Spark. Thus the performance achieved

Stages
1 2 3

St
ag

e 
co

m
pl

et
io

n 
tim

e 
(s

)

0

50

100

150

200

250

300
Flutter
Spark

(a) WordCount

Stages
1 2 3 4 5 6 7 8 9 10 11 12 13

St
ag

e 
co

m
pl

et
io

n 
tim

e 
(s

)

0

10

20

30

40

50

60
Flutter
Spark

(b) PageRank

Reduce Stages
0 10 20 30 40 50 60 70 80

St
ag

e 
co

m
pl

et
io

n 
tim

e 
(s

)

0

5

10

15

20

25

30
Flutter

(c) GraphX

Fig. 5: The completion times of stages in WordCount, PageR-
ank and GraphX.

is almost the same. In the second stage, the map stage is
normally not a stage with shuffle dependency. However, as
it runs after repartition stage, it becomes a stage with shuffle
dependency. We can see that the stage completion times of
this stage for the two schedulers are the same, which is
because the default scheduler also schedules the tasks in the
same data centers as ours. In the reduce stage, which is also
the last stage, our approach takes only 163 seconds, while
the default scheduler in Spark takes 295 seconds, which is
almost twice as long. The performance improvements are
due to both network-awareness and stage awareness, as
Flutter schedules the tasks in that stage as a whole, and take
the transfer times into consideration at the same time. It



10

WordCount PageRank GraphX

T
ra

n
s
fe

rr
e

d
 b

y
te

s
 (

G
B

y
te

s
)

0

1

2

3

4

5

6

7

8
Flutter
Spark

Fig. 6: The amount of data transferred among different data
centers.

can effectively reduce the number of straggler tasks and the
transfer times to get all the inputs.

We draw the stage completion times of PageRank in
Fig. 5(b). As we can see in this figure, it has 13 stages
in total, including two distinct stages, 10 reduceByKey stages
and one collect stage to collect the final results. We have
10 reduceByKey stage because the number of iterations is
10. Except for the first distinct stage, all the other stages
are shuffle dependent. So we adopt Flutter instead of delay
scheduling for task scheduling in those stages. As we can see
in stage 2, 3 and 13, we have far shorter stage completion
times compared with the default scheduler. Especially in
the last stage, Flutter takes only 1 second to finish that stage,
while the default scheduler takes 11 seconds.

Fig. 5(c) depicts the completion times of reduce stages
in GraphX. As the total number of stages is more than
300, we only draw the reduce stages in that job. Because
the stage completion times of these two schedulers are
similar, we only draw the stage completion time of Flutter
to illustrate the performance of GraphX. First, we can see
that the first reduce stage took about 28 seconds, while
the following reduce stages completed quickly, which takes
only 0.4 seconds. We can see that GraphX completes quickly
for later stages.

5.2.3 Data Volume Transferred across Data Centers
After we see the improvements of job completion times, we
are now ready to evaluate the performance of Flutter regard-
ing the amount of data transferred across geo-distributed
data centers in Fig. 6. In WordCount, the amount of data
transferred across different data centers with the default
scheduler is around three times to the one of Flutter. The
amount of data across data centers when running GraphX
is four times to our approach. In the case of PageRank, we
also achieved lower volumes of data transfers.

Even though reducing the amount of data transferred
across different data centers is not the main goal of our
optimization, we find out that it is in line with the goal
of reducing the job completion time for data processing
applications on distributed data centers. This is because the
bandwidth capacities across VMs in the same data center are
higher than those on inter-data center links. When Flutter
tries to place the tasks to reduce the transfer times to get
all the inputs, it will prefer to put the tasks in the data

The number of variables in the linear program
6 24 36 42 60 96 120

C
o
m

p
u
ta

ti
o
n
 t
im

e
 (

s
)

0

0.2

0.4

0.6

0.8

1

Fig. 7: The computation times of Flutter’s linear program at
different scales.

center that has most of the input data. Thus, it can reduce
the volume of data transfers across different data centers by
a substantial margin.

5.2.4 Scalability
Practicality is one of the main objectives when designing
Flutter, which means that Flutter needs to be efficient at
runtime. Therefore, we record the time it takes to solve the
LP (P1) when we run Spark applications. The results have
been shown in Fig. 7. In the figure, the number of variables
varies from 6 to 120 and the computation times are averaged
over multiple runs. We can see that the linear program is
rather efficient: it takes less than 0.1 second to return the
result for 60 variables. Moreover, the computation time is
less than 1 second for 120 variables, which is also acceptable
because the transfer times could be tens of seconds across
distributed data centers. Flutter is scalable because it is
formulated as an efficient LP, which can be solved efficiently
by standard LP solvers. Moreover, we can further reduce
the solver latency by using commercial LP solvers like
CPLEX [27] and Mosek [28], which can return the solutions
for problems with thousands of variables within one second.

5.3 Results on EC2
After reviewing the results in the private testbed, here we
further examine the performance of the four algorithms
including flutter with/without network budget constraints,
Iridium and Spark (delay scheduling) on Amazon EC2.
First, we want to know the performance of these algorithms
regarding job completion time, the amount of data transfers
and the costs incurred by those data transfers. Second, we
will see how the performance of flutter with network budget
constraints varies with θ.

5.3.1 Time, Data and Cost
We conduct all the experiments for five rounds. The de-
fault parallelism in WordCount is configured to be 12. For
PageRank, the number of iterations is 10, and the number
of partitions in GraphX is set to be 12. The number of CPU
cores for each task is 1 for all the three applications. The
value of θ is 1.0. With these settings, the results are shown
in Fig. 8. In Fig. 8(a), it shows that the job completion
times of the three applications. In this figure, we can see



11

WordCount PageRank GraphX
0

500

1000

1500

Applications

T
h

e 
Jo

b
 C

o
m

p
le

ti
o

n
 T

im
e 

(s
)

 

 

Flutter w/ Cost Awareness

Flutter w/o Cost Awarenes

Iridium

Spark

(a) The Job Completion Time

WordCount PageRank GraphX
0

0.5

1

1.5

2

2.5

Applications

T
h
e 

A
m

o
u
n
t 

o
f 

D
at

a 
T

ra
n
fe

rs
 a

cr
o
ss

 D
C

s 
(G

B
)

 

 

Flutter w/ Cost Awareness

Flutter w/o Cost Awarenes

Iridium

Spark

(b) The Amount of Data Transfers across DCs

WordCount PageRank GraphX
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Applications

T
h

e 
C

o
st

 o
f 

D
at

a 
T

ra
n

fe
rs

 a
cr

o
ss

 D
C

s 
(U

S
D

)

 

 

Flutter w/ Cost Awareness

Flutter w/o Cost Awarenes

Iridium

Spark

(c) The Cost of Data Tranfers across DCs

Fig. 8: The completion times, amount of data transfers across
DCs and the costs incurred by the data transfers.

that two algorithms of Flutter perform similar with Iridium
and Spark for WordCount, and Iridium performs the worst.
In PageRank, our algorithms have lower job completion
times, and Spark is the worst instead. In GraphX, our two
algorithms show remarkable improvements over the two
state-of-art algorithms. The reason for the results can be well
explained by the amount of data transferred across different
data centers.

Now we present the amount of data transferred across
data centers in Fig. 8(b). In this figure, we can see that
the amount of data transferred across data centers are
similar for WordCount. However, both of our algorithms
can substantially reduce the amount of data transferred
for PageRank and GraphX. More specifically, in PageRank,
the amount of data transferred across data centers of our
algorithms is 0 while the mean value for Iridium and Spark
is around 0.75 GB and 1 GB. The reason is that the inputs
for PageRank are all in the same data center, and our
algorithms schedules all the following tasks in that data
center. However, Iridium may schedule the tasks to other
data centers for the rounding process because the original
solution may not always be integral. For delay scheduling
in Spark, it incurs more traffic across data centers because
it does not consider the sizes and locations of intermediate
results at all. The above reasons also explain the results of
GraphX. But as the inputs of GraphX are in different data
centers, data transfers across data centers are inevitable,
which results in a small amount of data transferred for our
two algorithms.

Besides the job completion time and the amount of
data transferred across data centers, we also investigate the
costs incurred by the data transfers across data centers in
Fig. 8(c). In this figure, we can clearly see that the shape is
very much alike the one in Fig. 8(b). More specifically, for
PageRank and GraphX, we have much less amount of data
transfers in Fig. 8(b) and we can see that we have much
lower cost in Fig. 8(c). The most interesting part is in the
case of WordCount. In Fig. 8(b), it shows that the amount
of data transferred across data centers for flutter with cost
awareness is slightly higher than the other three. However,
in Fig. 8(c), the cost incurred by those data transfers is
only around half of the ones of other three algorithms,
which means that flutter with cost awareness is actually
working and can substantially reduce the cost incurred by
the data transfers across data centers. At the same time, the
performance of job completion time is also quite good as
shown in Fig. 8(a).

5.3.2 The Effect of θ
In the formulation of flutter with cost awareness, we use θ as
the tunable parameter to adjust the budget of network cost.
In prior experiments, θ is set to be 1.0, which means that
the solution is the same with the one that aims to minimize
the total network cost as shown in Eq. (7). We can also see
that in prior results, limiting the network budget would not
harm the job completion time but instead reduce the cost of
data transfers effectively. Here we set the number of CPU
cores needed for each task to be 4 to distribute the tasks to
as many data centers as possible and θ from 1.0 to 2.0 to
present more results about the flutter with cost awareness.
We conduct each experiment for several rounds.



12

1.0 1.1 1.2 1.3 1.4 1.6 1.8 2.0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

The Threshold for Budget (θ)

T
h

e 
N

o
rm

al
iz

ed
 J

o
b

 C
o

m
p

le
ti

o
n

 T
im

e

(a) The Normalized Job Completion Time

1.0 1.1 1.2 1.3 1.4 1.6 1.8 2.0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

The Threshold for Budget (θ)

T
h

e 
N

o
rm

al
iz

ed
 D

at
a 

T
ra

n
sf

er
s 

ac
ro

ss
 D

C
s

(b) The Normalized Amount of Data Transfers

1.0 1.1 1.2 1.3 1.4 1.6 1.8 2.0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

The Threshold for Budget (θ)

T
h

e 
N

o
rm

al
iz

ed
 C

o
st

 o
f 

D
at

a 
T

ra
n

fe
rs

 a
cr

o
ss

 D
C

s

(c) The Normalized Cost of Data Transfers

Fig. 9: The normalized completion times, amount of data
transfers across DCs and the costs incurred by the data
transfers w.r.t. Iridium.

Here we show how the performance would vary with
θ in Fig. 9. The results are normalized with respect to
Iridium. In Fig. 9(a), we outperform Iridium almost in all
the cases and reduce the job completion time by up to 16%.
In Fig. 9(b), we can see that the amount of data transferred
across data centers are almost the same; however, we can
effectively reduce the cost incurred by up to 10%. The
results also imply that directly setting the θ to be 1.0 can
yield good scheduling results already, which is also shown
in Fig. 8. In other words, we can directly solve the linear
programming problem in Eq. (7) to generate the scheduling
results. Note that the improvements are narrowed in this
figure as compared with Fig. 8, which is because the number
of cores needed for each task is 4 and it will decrease the
number of tasks that can be scheduled in each data center.

5.3.3 ILP Execution Time
Here we also present the computation times of the integer
linear programming problem in Eq. (9). The maximum
number of variables is 60. We record all the computation
times for the ILP at the runtime. We can see that the average
times are around 0.04 seconds and the standard deviations
are also less than 0.083 for all the three number of variables.
Therefore, it shows that the integer linear programming
problem is also very efficient at this scale.

TABLE 6: The computation times of the integer linear pro-
gramming problem in Eq. (9) (s).

Number of Variables 50 55 60
Average Time 0.0479 0.0494 0.0406
Standard Deviation 0.0800 0.0820 0.0723

6 RELATED WORK

In this section, we first show a few most related work in geo-
distributed big data processing and geo-distributed storage
services. We then survey some scheduling systems in dis-
tributed data processing systems in a single data center.

Geo-distributed data analytics has been studied in [5],
[21], [6], [29], [30], [31], [32]. In [5], the authors design
an integer programming problem for optimizing the query
execution plan and the data replication strategy to reduce
the bandwidth costs. As they assume each data center has
unlimited storage, they aggressively cache the results of
previous queries to reduce the data transfers of subsequent
queries. Clarinet [21] is also designed for SQL queries. It
feeds the bandwidth information to the query plan opti-
mizer to generate better query plans for queries over geo-
distributed data. Geo-distributed big data processing over
general big data processing systems like Hadopp and Spark
are discussed in Pixida [6] and SWAG [30]. In Pixida [6],
they propose a new way to aggregate the tasks in the
original DAG to make the DAG simpler. After that, they
propose a new generalized min-k-cut algorithm to divide
the simplified DAG into several parts for execution, and
each part would be executed in one data center. The case
of scheduling multiple jobs across geo-distributed data
centers is discussed in SWAG [30]. The aforementioned
approaches are all for general big data processing applica-
tions or SQL queries. Geo-distributed machine learning is



13

addressed in [31], [32]. GDML [31] is built upon YARN and
designed to accelerate the machine learning applications.
However, Gaia [32] improves the performance by designing
a new synchronization model, which avoids unnecessary
global synchronizations and thus saves the traffic across
geo-distributed data centers.

The most related recent work is Iridium [4] for low
latency geo-distributed analysis, while we have some sig-
nificant differences with it. First, they assume the network
connecting the sites (data centers) are congestion-free and
the network bottlenecks only exist in the up/down links
of VMs. This is not the case in our measurements. In our
measurements, the in/out bandwidths of VMs are both 1
Gbps in intra-data centers, while the bandwidths among
VMs in different data centers are only around 100 Mbps.
Therefore the network bottlenecks are more likely to exist
in the network connecting the data centers instead. Second,
in their linear programming formulation for task schedul-
ing, they assume reduce tasks are infinitesimally divisible
and each reduce task would receive the same amount of
intermediate results from the map tasks, which are unre-
alistic assumptions as reduce tasks are not divisible with
low overhead and the data skews are common in the data
processing frameworks [33]. While we use the exact amount
of intermediate results that each reduce task would read
from the outputs of map tasks.

Besides job scheduling across geo-distributed data cen-
ters, geo-distributed storage services and load balancing
problems are investigated in [34], [35], [36]. More specifi-
cally, a carbon-aware geo-distributed storage system is pro-
posed in [34]. Instead, the authors in [35] aim to minimize
the monetary costs of instances including both on-demand
and spot instances for in-memory storage workloads. Our
work is different from these two systems because we focus
on the task scheduling problem given the fixed input data
placements and we target at big data processing applica-
tions on top of Spark or Hadoop. While we focus on the
task scheduling problem in the task-level, a service-level
geographical load balancing scheme to minimize the cost
including energy cost and delay cost is proposed in [36].

General task/job scheduling in data processing systems
has been investigated in [37], [38], [39], [40], [41], [42], [43].
More specifically, Yarn [37] and Mesos [38] are the cluster
managers designed for improving cluster utilization. Spar-
row [39] is a decentralized scheduling system for Spark that
can schedule a significant number of jobs at the same time
with little scheduling delays, and Hopper [40] is a unified
speculation-aware scheduling framework for both central-
ized and decentralized schedulers. Moreover, HUG [42] is
designed to achieve multi-resource fairness for elastic and
correlated demands.

7 CONCLUDING REMARKS

In this paper, we focus on how tasks may be scheduled
closer to the data across geo-distributed data centers for
workloads with/without network budget constraints. We
first find out that the network could be a bottleneck for
geo-distributed big data processing, by measuring avail-
able bandwidth across Amazon EC2 data centers. Thus
we formulate our problem for workloads without network

budget constraints as an integer linear programming prob-
lem, considering both the network and the computational
resource constraints. We also find out that we can trans-
form the integer linear programming problems into a linear
programming problem, with the same optimal solution.
However, we identify that achieving the optimal comple-
tion time would not guarantee the optimal network cost.
Therefore we formulate the problem for workloads with
network budget constraints separately as another integer
linear programming problem.

Based on these theoretical insights, we have designed
and implemented Flutter, a new framework for scheduling
tasks across geo-distributed data centers for both workloads
with/without network budget constraints. With real-world
performance evaluations using an inter-data center network
testbed and VMs on Amazon EC2, we have shown con-
vincing evidence that Flutter is not only able to shorten
the job completion times but also to reduce the amount of
traffic that needs to be transferred to other data centers.
We can also substantially lower the cost incurred by the
data transfers across data centers. In our future work, we
will investigate how data placement, replication, and task
scheduling can be jointly optimized for even better per-
formance in the context of wide-area big data processing.
We also plan to apply the DAG scheduling techniques to
directly optimize the job level performance.

REFERENCES

[1] Z. Hu, B. Li, and J. Luo, “Flutter: Scheduling Tasks Closer to Data
across Geo-distributed Datacenters,” in Proc. IEEE INFOCOM,
2016.

[2] J. J. Stephen, D. Gmach, R. Block, A. Madan, and A. AuYoung,
“Distributed Real-Time Event Analysis,” in Proc. IEEE ICAC, 2015.

[3] “How to Fight the New Breed of DDoS Attacks on Data Centers,”
"https://goo.gl/5xX7eH", accessed on 02.11.2017.

[4] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
V. Bahl, and I. Stoica, “Low Latency Geo-Distributed Data Ana-
lytics,” in Proc. ACM SIGCOMM, 2015.

[5] A. Vulimiri, C. Curino, B. Godfrey, J. Padhye, and G. Varghese,
“Global Analytics in the Face of Bandwidth and Regulatory Con-
straints,” in Proc. USENIX NSDI, 2015.

[6] K. Kloudas, M. Mamede, N. Preguiça, and R. Rodrigues, “Pixida:
Optimizing Data Parallel Jobs in Bandwidth-Skewed Environ-
ments,” in Proc. VLDB, 2015.

[7] Y.-K. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allo-
cating Directed Task Graphs to Multiprocessors,” ACM Computing
Surveys, vol. 31, no. 4, pp. 406–471, 1999.

[8] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, B.-G. Chun,
and V. ICSI, “Making Sense of Performance in Data Analytics
Frameworks,” in Proc. of USENIX NSDI, 2015.

[9] “Microsoft Azure: Cloud Computing Platform & Services.”
[Online]. Available: https://azure.microsoft.com/en-us/

[10] “Amazon EC2.” [Online]. Available:
http://aws.amazon.com/ec2/

[11] “Google Compute Engine.” [Online]. Available:
https://cloud.google.com/compute/

[12] “Microsoft Azure: Data Transfers Pricing Details.” [Online].
Available: https://goo.gl/e1iPc9

[13] “EC2 Instance Pricing - Amazon Web Services (AWS).” [Online].
Available: https://aws.amazon.com/ec2/pricing/

[14] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient Distributed
Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing,” in Proc. USENIX NSDI, 2012.

[15] M. Mao and M. Humphrey, “A Performance Study on the VM
Startup Time in the Cloud,” in Proc. IEEE CLOUD, 2012.

[16] R. Meyer, “A Class of Nonlinear Integer Programs Solvable by a
Single Linear Program,” SIAM Journal on Control and Optimization,
vol. 15, no. 6, pp. 935–946, 1977.



14

[17] Z. Huang, B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and
D. H. Tsang, “Need for Speed: Cora Scheduler for Optimizing
Completion-Times in the Cloud,” in Proc. IEEE INFOCOM, 2015.

[18] “Breeze: a numerical processing library for Scala.” [Online].
Available: https://github.com/scalanlp/breeze.

[19] “Scala.” [Online]. Available: http://www.scala-lang.org/
[20] “Hadoop.” [Online]. Available: https://hadoop.apache.org/
[21] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “CLAR-

INET: WAN-Aware Optimization for Analytics Queries,” in
Proc. USENIX OSDI, 2016.

[22] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay Scheduling: a Simple Technique for Achiev-
ing Locality and Fairness in Cluster Scheduling,” in Proc. of ACM
Eurosys, 2010.

[23] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
Citation Ranking: Bringing Order to the Web.” 1999.

[24] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin,
and I. Stoica, “Graphx: Graph Processing in a Distributed
Dataflow Framework,” in Proc. USENIX OSDI, 2014.

[25] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney, “Com-
munity Structure in Large Networks: Natural Cluster Sizes and
the Absence of Large Well-Defined Clusters,” Internet Mathematics,
vol. 6, no. 1, pp. 29–123, 2009.

[26] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford Large Net-
work Dataset Collection,” http://snap.stanford.edu/data, Jun.
2014.

[27] “IBM ILOG CPLEX Optimizer.” [Online]. Available:
https://goo.gl/jyvDuV

[28] “Mosek.” [Online]. Available: https://www.mosek.com/
[29] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and G. Vargh-

ese, “WANalytics: Analytics for a Geo-distributed Data-intensive
World,” in Proc. CIDR, 2015.

[30] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling Jobs Across
Geo-distributed Datacenters,” in Proc. ACM SoCC, 2015.

[31] I. Cano, M. Weimer, D. Mahajan, C. Curino, and G. M. Fumarola,
“Towards Geo-Distributed Machine Learning,” arXiv preprint
arXiv:1603.09035, 2016.

[32] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger,
P. B. Gibbons, and O. Mutlu, “Gaia: Geo-Distributed Machine
Learning Approaching LAN Speeds,” in Proc. USENIX NSDI,
2017.

[33] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “Skewtune: miti-
gating skew in mapreduce applications,” in Proc. ACM SIGMOD,
2012.

[34] Z. Xu, N. Deng, C. Stewart, and X. Wang, “Cadre: Carbon-Aware
Data Replication for Geo-Diverse Services,” in Proc. IEEE ICAC,
2015.

[35] Z. Xu, C. Stewart, N. Deng, and X. Wang, “Blending On-Demand
and Spot Instances to Lower Costs for In-Memory Storage,” in
Proc. IEEE INFOCOM, 2016.

[36] Z. Liu, M. Lin, A. Wierman, S. Low, and L. L. Andrew, “Greening
Geographical Load Balancing,” IEEE/ACM Transactions on Net-
working (TON), vol. 23, no. 2, pp. 657–671, 2015.

[37] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache
Hadoop Yarn: Yet Another Resource Negotiator,” in Proc. ACM
SoCC, 2013.

[38] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-
Grained Resource Sharing in the Data Center,” in Proc. USENIX
NSDI, 2011.

[39] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow:
Distributed, Low Latency Scheduling,” in Proc. ACM SOSP, 2013.

[40] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu, “Hopper:
Decentralized Speculation-aware Cluster Scheduling at Scale,” in
Proc. ACM SIGCOMM, 2015.

[41] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg, “Quincy: Fair Scheduling for Distributed Computing
Clusters,” in Proc. ACM SIGOPS, 2009.

[42] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “HUG: Multi-
Resource Fairness for Correlated and Elastic Demands,” in Proc.
USENIX NSDI, 2016.

[43] Z. Hu, B. Li, Z. Qin, and R. S. M. Goh, “Job Scheduling without
Prior Information in Big Data Processing Systems,” in Proc. IEEE
ICDCS, 2017.

Zhiming Hu received his BS degree in com-
puter science from Zhejiang University, China,
in 2011 and his Ph.D. degree from the School
of Computer Science and Engineering, Nanyang
Technological University, Singapore, in 2016. He
is now a postdoctoral fellow in the Department of
Electrical and Computer Engineering, University
of Toronto, Canada. His research interests in-
clude big data processing, data center network-
ing, and cloud computing.

Baochun Li received his B.Engr. degree from
the Department of Computer Science and Tech-
nology, Tsinghua University, China, in 1995 and
his M.S. and Ph.D. degrees from the Department
of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, in 1997 and 2000.

Since 2000, he has been with the Department
of Electrical and Computer Engineering at the
University of Toronto, where he is currently a
Professor. He holds the Bell Canada Endowed
Chair in Computer Engineering since August

2005. His research interests include cloud computing, multimedia sys-
tems, applications of network coding, and wireless networks. He was
the recipient of the IEEE Communications Society Leonard G. Abraham
Award in the Field of Communications Systems in 2000, the Multimedia
Communications Best Paper Award from the IEEE Communications
Society in 2009, and the University of Toronto McLean Award in 2009.
He is a member of ACM and a Fellow of IEEE.

Jun Luo received his BS and MS degrees in
Electrical Engineering from Tsinghua University,
China, and the Ph.D. degree in Computer Sci-
ence from EPFL (Swiss Federal Institute of Tech-
nology in Lausanne), Lausanne, Switzerland.
From 2006 to 2008, he has worked as a post-
doctoral research fellow in the Department of
Electrical and Computer Engineering, Univer-
sity of Waterloo, Waterloo, Canada. In 2008, he
joined the faculty of the School of Computer
Engineering, Nanyang Technological University

in Singapore, where he is currently an associate professor. His research
interests include wireless networking, mobile and pervasive computing,
applied operations research, as well as network security. More informa-
tion can be found at http://www3.ntu.edu.sg/home/junluo.


