
Interactive Planning-based Cognitive
Assistance on the Edge

Zhiming Hu, Maayan Shvo, Allan Jepson and Iqbal Mohomed
Samsung AI Centre, Toronto

What is cognitive assistance?
‣ One of the most exciting applications in AR Glasses

‣ Google Glass, HoloLens 2

‣ Helpful in a myriad of tasks

‣ Health care education and training

‣ Industrial tool for remote support

‣ Cooking assistant and fitness coach

�2
Image source for HoloLens 2: https://commons.wikimedia.org/wiki/File:HoloLens_2.jpeg,
https://creativecommons.org/licenses/by/2.0/legalcode, changes are not made on the image.

https://commons.wikimedia.org/wiki/File:HoloLens_2.jpeg
https://creativecommons.org/licenses/by/2.0/legalcode

How to build a cognitive assistant?
‣ Lots of existing work on building cognitive assistance [1,2,3,4]

‣ Perception module

‣ Determine the current task state

‣ Cognitive module

‣ Generate the next step

�3

[1] VideoPipe: Building Video Stream Processing Pipelines at the Edge, Middleware 2019
[2] https://github.com/cmusatyalab/gabriel-sandwich
[3] Mohan, S., Ramea, K., Price, B., Shreve, M., Eldardiry, H., & Nelson, L. (2019). Building Jarvis-A Learner-Aware
Conversational Trainer. In IUI Workshops.
[4] Laird, John E. The Soar cognitive architecture. MIT press, 2012.

https://github.com/cmusatyalab/gabriel-sandwich

The motivation
‣ While it is simple to build a state machine to guide a user to complete

some tasks, there are several issues

‣ The state machine needs to be pre-defined

‣ It cannot list all the possible user errors, thus cannot recover from such
failure cases.

�4

Bread Ham Lettuce Tomato Bread

Bread ?

How about a planner?
‣ Benefits

‣ Flexible, can recover from any user errors

‣ Challenges

‣ Need to calculate accurate current task state (CTS)

‣ Not as computationally efficient as state machines.

�5

A planning problem
‣ A planning problem may be encoded in PDDL by defining the domain, initial state,

and goal state.

\

‣ If all of the ingredients are clear and on the table, one possible solution is π =
stack(ham,bread1),stack(lettuce,ham),stack(bread2,lettuce),
stack(tomato,bread2),stack(bread3,tomato).

�6

Classifier for the Top Object on
the Sandwich

Sequence of Classification Results:
Bread -> Ham -> Bread

Stack Bread on Ham
OR

Unstack Ham from Bread

Figure 2: A case of ambiguity when deciding the current task
state based on the information from the perceptual module.

In the edge server, the frames will first go through a percep-
tual module, which could be a classifier or an object detector.
The classification/detection results will then be used to com-
pute the current task state. If there is any ambiguity in this step,
our system will initiate a dialogue with the user to resolve the
ambiguity. Finally, given the up-to-date current task state, the
planner and the state tracker will generate the corresponding
next step instruction to the user.

We will use a sandwich assembly task as an example for
the rest of the paper. This is the same task used in the Gabriel
cognitive assistant and is a good toy example to consider the
key aspects of the system. The user is given a set of ingredients
(e.g. tomato, lettuce, bread) and given explicit instructions to
assemble a particular sandwich.

3.1 Dialogue-based Ambiguity Resolving
We may not be able to compute the current task state because
of partial observability in some applications. For instance, as
shown in Fig. 2, if a user is stacking a sandwich, because of
occlusion, the perceptual module can only detect the top ob-
ject on the sandwich. Initially, the bread is detected followed
by a piece of ham. In this case, the system will assume that
a piece of ham has been put on the bread. However, after
that, if the top object then changes to bread again then the
system could conclude that either a new slice of bread added
or perhaps the ham was taken away. (Many other possibilities
exist, but we will assume the user is cooperative and is only
adding or removing one object at a time.)

In the above case, the system can resolve the ambiguity in
current task state by requesting for clarification from the user.
Previous work [20] suggests that a clarification request should
list all uncertain options when there exist no more than two
options (e.g., “Did you <add/remove> <item1> or <item2>?”.
Otherwise, humans prefer to be asked a Wh-question (e.g.,
“What item did you <add/remove>?”).

3.2 Planner
To address the aforementioned shortcomings of FSMs we
turn to AI planning (e.g., [8, 11]), where the objective is to

generate a partially or totally ordered sequence of actions – a
plan – which transforms some initially specified state of the
world to a desired (goal) state. Research in the field, spanning
many decades, has strived to produce general solutions to this
problem, leading to planners which are not domain-specific.
That is, general-purpose planners have been created, which
are agnostic to problem and domain specific peculiarities
and return a solution, a plan, given some input specified in
a generic and standard format (e.g., the Planning Domain
Definition Language (PDDL) [15]).

Definition 1 (Planning Problem). A planning problem is a

tuple of the form P = (F,A, I,G), where F is a finite set of

fluent symbols, A is a set of actions, I ✓ F defines the initial

state, and G ✓ F defines the goal state. Each action a 2 A is

associated with a precondition, Prea, add effects, eff
+
a

, delete

effects, eff
�
a

, and non-negative action costs, COST(a).

A state, s, is a set of fluents that are true (a fluent is a condi-
tion that can change over time). An action a 2 A is executable

in a state s if Prea ✓ s. The successor state is defined as
d(a,s) =((s\ eff

�
a

) [eff
+
a

) for the executable actions. The
sequence of actions p = [a1, ...,an] is executable in s if the
state s

0 = d(an,d(an�1, . . . ,d(a1,s))) is defined. Moreover, p
is the solution to a planning problem P if it is executable from
I and G ✓ d(an,d(an�1, . . . ,d(a1, I))).

Given a user goal, G, we instantiate a planning problem
P = (F,A, I,G) where I, A and F are predefined. We make
assumptions pertaining to the initial state I that may or may
not hold in the world. To illustrate, we partially model our
sandwich example as a planning problem:

• stack(x,y) 2 A

– Prestack = {clear(x),clear(y),ontable(x)}
– eff

+
stack

= {on(x,y)} (note: x is on y)
– eff

�
stack

= {clear(y)}

• G = {onTable(bread1),on(ham,bread1),on(lettuce,ham),
on(bread2,lettuce),on(tomato,bread2),on(bread3,tomato)}

Given that initially all of the ingredients are clear and on the
table, one possible solution to the above problem is a plan p =
stack(ham,bread1),stack(lettuce,ham),stack(bread2,lettuce),
stack(tomato,bread2),stack(bread3,tomato).

3.2.1 Interactive State Tracking System

The system guides the user through the execution of p by
providing her with the plan incrementally, one step at a time.
In the beginning, we generate the initial plan p and build a
state machine based on the plan. After that, the vision system
is assumed to observe actions performed by the user (e.g.,
stack(lettuce,ham)) which are then used to update the current
state of the world. More specifically, when the vision system
observes some action a in some state s, the new state will be

The key to get the correct plan is to
obtain accurate current task state

Ambiguity Resolving
‣ We keep track of the current task state by recognizing the actions taken

since the beginning of the interaction.

‣ However, we may encounter ambiguous cases where we cannot
determine which action was performed by the user.

�7

Classifier for the Top Object on
the Sandwich

Sequence of Classification Results:
Bread -> Ham -> Bread

Stack Bread on Ham
OR

Unstack Ham from Bread

Figure 2: A case of ambiguity when deciding the current task
state based on the information from the perceptual module.

In the edge server, the frames will first go through a percep-
tual module, which could be a classifier or an object detector.
The classification/detection results will then be used to com-
pute the current task state. If there is any ambiguity in this step,
our system will initiate a dialogue with the user to resolve the
ambiguity. Finally, given the up-to-date current task state, the
planner and the state tracker will generate the corresponding
next step instruction to the user.

We will use a sandwich assembly task as an example for
the rest of the paper. This is the same task used in the Gabriel
cognitive assistant and is a good toy example to consider the
key aspects of the system. The user is given a set of ingredients
(e.g. tomato, lettuce, bread) and given explicit instructions to
assemble a particular sandwich.

3.1 Dialogue-based Ambiguity Resolving
We may not be able to compute the current task state because
of partial observability in some applications. For instance, as
shown in Fig. 2, if a user is stacking a sandwich, because of
occlusion, the perceptual module can only detect the top ob-
ject on the sandwich. Initially, the bread is detected followed
by a piece of ham. In this case, the system will assume that
a piece of ham has been put on the bread. However, after
that, if the top object then changes to bread again then the
system could conclude that either a new slice of bread added
or perhaps the ham was taken away. (Many other possibilities
exist, but we will assume the user is cooperative and is only
adding or removing one object at a time.)

In the above case, the system can resolve the ambiguity in
current task state by requesting for clarification from the user.
Previous work [20] suggests that a clarification request should
list all uncertain options when there exist no more than two
options (e.g., “Did you <add/remove> <item1> or <item2>?”.
Otherwise, humans prefer to be asked a Wh-question (e.g.,
“What item did you <add/remove>?”).

3.2 Planner
To address the aforementioned shortcomings of FSMs we
turn to AI planning (e.g., [8, 11]), where the objective is to

generate a partially or totally ordered sequence of actions – a
plan – which transforms some initially specified state of the
world to a desired (goal) state. Research in the field, spanning
many decades, has strived to produce general solutions to this
problem, leading to planners which are not domain-specific.
That is, general-purpose planners have been created, which
are agnostic to problem and domain specific peculiarities
and return a solution, a plan, given some input specified in
a generic and standard format (e.g., the Planning Domain
Definition Language (PDDL) [15]).

Definition 1 (Planning Problem). A planning problem is a

tuple of the form P = (F,A, I,G), where F is a finite set of

fluent symbols, A is a set of actions, I ✓ F defines the initial

state, and G ✓ F defines the goal state. Each action a 2 A is

associated with a precondition, Prea, add effects, eff
+
a

, delete

effects, eff
�
a

, and non-negative action costs, COST(a).

A state, s, is a set of fluents that are true (a fluent is a condi-
tion that can change over time). An action a 2 A is executable

in a state s if Prea ✓ s. The successor state is defined as
d(a,s) =((s\ eff

�
a

) [eff
+
a

) for the executable actions. The
sequence of actions p = [a1, ...,an] is executable in s if the
state s

0 = d(an,d(an�1, . . . ,d(a1,s))) is defined. Moreover, p
is the solution to a planning problem P if it is executable from
I and G ✓ d(an,d(an�1, . . . ,d(a1, I))).

Given a user goal, G, we instantiate a planning problem
P = (F,A, I,G) where I, A and F are predefined. We make
assumptions pertaining to the initial state I that may or may
not hold in the world. To illustrate, we partially model our
sandwich example as a planning problem:

• stack(x,y) 2 A

– Prestack = {clear(x),clear(y),ontable(x)}
– eff

+
stack

= {on(x,y)} (note: x is on y)
– eff

�
stack

= {clear(y)}

• G = {onTable(bread1),on(ham,bread1),on(lettuce,ham),
on(bread2,lettuce),on(tomato,bread2),on(bread3,tomato)}

Given that initially all of the ingredients are clear and on the
table, one possible solution to the above problem is a plan p =
stack(ham,bread1),stack(lettuce,ham),stack(bread2,lettuce),
stack(tomato,bread2),stack(bread3,tomato).

3.2.1 Interactive State Tracking System

The system guides the user through the execution of p by
providing her with the plan incrementally, one step at a time.
In the beginning, we generate the initial plan p and build a
state machine based on the plan. After that, the vision system
is assumed to observe actions performed by the user (e.g.,
stack(lettuce,ham)) which are then used to update the current
state of the world. More specifically, when the vision system
observes some action a in some state s, the new state will be

Dynamic State Tracking
‣ A planner with state machines

‣ The planner will only be called when an unexpected action is detected

�8

Stack Ham

on Bread

Stack Lettuce

on Ham

Stack Bread

on Lettuce

End

Start

Stack Lettuce

on Ham

Stack Bread

on Lettuce

End

Stack Tomato

on Ham

Observed Activity

Replanning

Unstack Tomato

from Ham

Figure 3: State tracking with a planner and state machines.
The green box shows the current expected action.

the successor state d(a,s). Following the observation of a user
action, we check whether the observed action a matches the
current step of the plan that was given to the user. If yes, we
will provide the next instruction directly based on the state
machine and change the current state in the state machine.
However, if not, we generate a new planning problem where
I is the updated state d(a,s) and solve it to obtain p0. For
instance, if the user made a mistake such as stacking tomato
on ham instead of stacking lettuce on ham, p0 will correct
the user’s mistake and instruct her to remove the tomato and
place the lettuce instead. An illustrative figure is shown in
Fig. 3. With the new p0, a new state machine is built based
on the new list of instructions. The approach of integrating
the planner with a state machine is advantageous since the
system will not trigger the planner every time as long as the
user is following the plan. Note that we employ here a simple
approach to plan execution and monitoring; the rich body of
related work offers a myriad of solutions (e.g., [7, 8]).

4 Implementation

We built our system on top of the gabriel-sandwich project [9]
with a edge server architecture and adopted the WebSocket to
transfer frames and resulting instructions between the client
and edge server. We have implemented a new Hololens 2
client and added our image classification module, the activity
recognition module and the interactive state tracking module
in the edge server. A video demonstration is available [2].

For the client, as we can see in Fig. 1, it also acts as the
camera source. In our system, we only fetch new frames from
the camera source if there are less than two frames that are
under processing in the edge server. All the other frames will
be dropped at the camera source directly.

In the edge server, for the image classification module, we
adopt the transfer learning method and build our model based
on a lightweight MobileNet v2 backbone network [1], which
could be deployed on a lot of edge devices. We have five
classes in our case, which are bread, tomato, lettuce, ham and
a label for the background class. To fine tuning the network,

we take pictures on the objects in a sandwich toy and prepare
around 60 images for each label. It achieves the accuracy of
more than 99% for both the training set and the validation
set after 20 iterations. In the edge server, we also smooth the
detection results and only report the detection of an object if
it has been detected for four consecutive frames.

As shown in Fig. 2, the top object cannot fully represent
the current task state because different actions may lead to
the same top object. Therefore, we propose a simple activity
recognition method based on the changes of the top objects
and the objects that we already stacked in the pile. For in-
stance, if we have stacked A and B in sequence, we will know
that C is put on B if C is detected right after B. This method
allows us to infer a temporal relation (e.g., cheese stacked
on bread) by leveraging a classifier running on a sequence of
frames. However, if A is detected after B, we need to involve
the user to resolve the ambiguity and figure out whether the
user has put another A on B or it has removed the B on top.

Given the user’s goal (e.g., make a ham sandwich), we
call the fast-downward planning system [10] to generate a
plan, which achieves the goal. The user is then provided with
the first instruction. Following this, when a user action is
observed, we check whether the action matches the current
step of the plan. As described previously, we only call the
planner if the observed action does not match the current
instruction. Otherwise, we directly track the state transitions
based on a state machine derived from the plan. Whenever a
user action is observed, we update the state of the world by
modifying the PDDL file to reflect effects of the action.

(a) Runtime for the planner. (b) Runtime for the classifier

Figure 4: Runtime for the planner and the classifier.

5 Evaluation

In this section, we show the characteristics of running the
planner and the classifier in our experiments.

5.1 Case Study: A Planning Example
We show a planning example in Table 4. In this table, we can
see that the original plan is to stack bread1, ham1, lettuce1,
bread2, tomato1 and bread3 in sequence. However, if we make
a mistake and stack the lettuce instead of ham in the second
step, the planner automatically generates a new plan and the

Runtime of the planner and classifier

�9

Stack Ham

on Bread

Stack Lettuce

on Ham

Stack Bread

on Lettuce

End

Start

Stack Lettuce

on Ham

Stack Bread

on Lettuce

End

Stack Tomato

on Ham

Observed Activity

Replanning

Unstack Tomato

from Ham

Figure 3: State tracking with a planner and state machines.
The green box shows the current expected action.

the successor state d(a,s). Following the observation of a user
action, we check whether the observed action a matches the
current step of the plan that was given to the user. If yes, we
will provide the next instruction directly based on the state
machine and change the current state in the state machine.
However, if not, we generate a new planning problem where
I is the updated state d(a,s) and solve it to obtain p0. For
instance, if the user made a mistake such as stacking tomato
on ham instead of stacking lettuce on ham, p0 will correct
the user’s mistake and instruct her to remove the tomato and
place the lettuce instead. An illustrative figure is shown in
Fig. 3. With the new p0, a new state machine is built based
on the new list of instructions. The approach of integrating
the planner with a state machine is advantageous since the
system will not trigger the planner every time as long as the
user is following the plan. Note that we employ here a simple
approach to plan execution and monitoring; the rich body of
related work offers a myriad of solutions (e.g., [7, 8]).

4 Implementation

We built our system on top of the gabriel-sandwich project [9]
with a edge server architecture and adopted the WebSocket to
transfer frames and resulting instructions between the client
and edge server. We have implemented a new Hololens 2
client and added our image classification module, the activity
recognition module and the interactive state tracking module
in the edge server. A video demonstration is available [2].

For the client, as we can see in Fig. 1, it also acts as the
camera source. In our system, we only fetch new frames from
the camera source if there are less than two frames that are
under processing in the edge server. All the other frames will
be dropped at the camera source directly.

In the edge server, for the image classification module, we
adopt the transfer learning method and build our model based
on a lightweight MobileNet v2 backbone network [1], which
could be deployed on a lot of edge devices. We have five
classes in our case, which are bread, tomato, lettuce, ham and
a label for the background class. To fine tuning the network,

we take pictures on the objects in a sandwich toy and prepare
around 60 images for each label. It achieves the accuracy of
more than 99% for both the training set and the validation
set after 20 iterations. In the edge server, we also smooth the
detection results and only report the detection of an object if
it has been detected for four consecutive frames.

As shown in Fig. 2, the top object cannot fully represent
the current task state because different actions may lead to
the same top object. Therefore, we propose a simple activity
recognition method based on the changes of the top objects
and the objects that we already stacked in the pile. For in-
stance, if we have stacked A and B in sequence, we will know
that C is put on B if C is detected right after B. This method
allows us to infer a temporal relation (e.g., cheese stacked
on bread) by leveraging a classifier running on a sequence of
frames. However, if A is detected after B, we need to involve
the user to resolve the ambiguity and figure out whether the
user has put another A on B or it has removed the B on top.

Given the user’s goal (e.g., make a ham sandwich), we
call the fast-downward planning system [10] to generate a
plan, which achieves the goal. The user is then provided with
the first instruction. Following this, when a user action is
observed, we check whether the action matches the current
step of the plan. As described previously, we only call the
planner if the observed action does not match the current
instruction. Otherwise, we directly track the state transitions
based on a state machine derived from the plan. Whenever a
user action is observed, we update the state of the world by
modifying the PDDL file to reflect effects of the action.

0.2 0.3 0.4
5untime fRr the plDnner (s)

0.00

0.25

0.50

0.75

1.00

CD
)

(a) Runtime for the planner.

0.02 0.03
5untime fRr the FlDssifier (s)

0.00

0.25

0.50

0.75

1.00

CD
)

(b) Runtime for the classifier

Figure 4: Runtime for the planner and the classifier.

5 Evaluation

In this section, we show the characteristics of running the
planner and the classifier in our experiments.

5.1 Case Study: A Planning Example
We show a planning example in Table 4. In this table, we can
see that the original plan is to stack bread1, ham1, lettuce1,
bread2, tomato1 and bread3 in sequence. However, if we make
a mistake and stack the lettuce instead of ham in the second
step, the planner automatically generates a new plan and the

It is feasible to run both the planner and
classifier on the edge.

Demo
‣ The video for our demo is available here.

�10

https://youtu.be/RttF2NBBWh8

Future Work
‣ Personalized instructions

‣ Resource management for multiple cognitive assistance agents

‣ Applications that only need partial order

‣ Linear Temporal Logic (LTL)

�11

Summary
‣ We have proposed an architecture for cognitive assistants on the edge

‣ Ambiguous task states are prevalent and we need to deal with them

‣ We should combine the planner with state machines to enjoy both of the
benefits.

�12

Thanks!
zhiming.hu@samsung.com

�13

mailto:zhiming.hu@samsung.com

