
Interactive Planning-based Cognitive Assistance on the Edge

Zhiming Hu Maayan Shvo Allan Jepson Iqbal Mohomed
Samsung AI Center-Toronto

Abstract
Real-time cognitive assistance is one of the most exciting
applications in the age of Augmented Reality (AR). Several
research groups have explored the use of cognitive assistants,
embodied within smartphones or wearable AR glasses, to
guide users through unfamiliar tasks (e.g., assembling a piece
of furniture or following a recipe). These systems generally
consist of two high-level modules: a perceptual module (e.g.,
a deep-learning based vision system) and a cognitive module
(implemented via a rule-engine or state machine), and must
operate in near real-time. As such, cognitive assistants are
illustrative use-cases for edge computing. While prior work
has focused on pushing the frontier of what is possible, it
suffers from some defects that hinder practical deployment.
First, much research on cognitive assistants has assumed an
accurate visual perception system, which may not be true in
practice. Second, while some work has explored user errors in
performance of tasks, the manner in which this is done is not
scalable (i.e., possible errors are explicitly specified in a state
machine representation apriori). To address these limitations,
in this paper, we propose (i) to involve users in resolving
the ambiguity/uncertainty of visual inputs and (ii) to employ
automated planning tools as well as execution monitoring
techniques to keep track of the task states, as well as to gen-
erate new plans to recover from users’ mistakes if necessary.
To verify the feasibility of our system, we implemented and
tested it on both an Android phone and HoloLens 2, supported
by an edge server for off-loading computation.

1 Introduction

Cognitive assistance is an exciting emerging application of
Augmented Reality (AR) enabled wearable devices. A cog-
nitive assistant is envisioned to observe the user as he/she
carries on her tasks, but can intervene if it detects the user
might need assistance. Several research groups [9, 16] have
explored the frontiers of this problem, and the resulting pro-
totypes typically consist of two high level modules. The first

component (perceptual module) perceives the state of the
world, while the other component (cognitive module) tracks
progress as the user performs a task, and can intervene with
assistance if needed.

To realize a practical cognitive assistant, we first need a
robust perceptual module, whose purpose is to understand the
visual surrounding world and compute the current task state.
Fortunately, with advances in deep learning, both the accu-
racy and the efficiency of many computer vision tasks such as
object detection and image classification, have been substan-
tially improved. Moreover, models for these tasks can also
meet tight latency requirements even when they are deployed
in the edge [9, 14].

However, in practice, the current task state could be ambigu-
ous for the following reasons. First, the perceptual module
may provide ambiguous detection results in many different
cases [13, 21]. For instance, a detector may produce a wrong
label for an object if it is too far or too close to the cam-
era. Second, for efficiency, many systems that target practical
deployment only take a single frame as input to obtain the cur-
rent task state and do not consider temporal relations across
frames. Therefore, even with accurate object detection results
on a single frame, the system may still be confused about
the corresponding task state because different task states may
look exactly the same.

Besides the robust visual perception module, we need an
efficient state tracker to keep track of the task states and pro-
vide real-time suggestions to end users. On the one hand, a
few systems built on top of the Gabriel [5] system adopt finite
state machines (FSM) to track the state transitions, which is
very efficient. However, it can only recover from a few prede-
fined user errors, which are hard-coded in the state machine.
Furthermore, it is often infeasible to exhaustively list all the
possible state transitions in a predefined state machine given
dynamic conditions. On the other hand, Jarvis [16] proposes a
planner to dynamically generate the next step, which in theory
is able to recover from any number of incorrect steps. How-
ever, Jarvis [16] triggers the planner every time it needs to
provide suggestions for the next step, even if the user is follow-



Classifier/Detector 

Compute Current 
Task State (CTS) 

Planner and 
State Tracker

Incoming Frame

Instructions

User with AR-enabled app on 
mobile phone or AR Glasses

Ambiguity Resolving

5

4
3

2

1

Figure 1: High level system design.

ing the plan. This could be too expensive for time-sensitive
applications and wastes computational resources.

In this paper, we argue that obtaining accurate current task
state from the perceptual module and dynamic state track-
ing are the foundations for a cognitive assistant to provide
meaningful feedback to end users. To this end, we propose a
cognitive assistance framework that will interact with users
to resolve ambiguity if there is any when deciding the cur-
rent task state. Moreover, to be able to handle unpredictable
user errors, we employ execution monitoring techniques in
a dynamic state tracking system, which tracks the current
task state based on the perceptual module and recovers from
dynamic user errors. More specifically, the dynamic state
tracking system consists of a planner and a state machine. In
the beginning, the state machine is generated from the initial
plan. If the user is following the plan, the state transitions will
be efficiently handled by the state machine. If not, the planner
will try to generate a new plan and a new state machine is built
according to the new plan. By combining the planner with a
state machine, we could both benefit from the flexibility of
the planner for recovering from different user errors and the
efficiency of state machines for fast state transitions.

The contributions of our paper are two-fold. First, we pro-
pose to involve users in disambiguating ambiguous current
task state that could not be distinguished solely based on
the perceptual module. Second, by building upon techniques
from both automated planning and execution monitoring and
combining a planner with a state machine, we are able to
incorporate a state tracking system in our approach to dynam-
ically track the current task state and to recover from user
errors in different conditions.

2 Background and Motivation

In this section, we show two key challenges of building a
practical cognitive assistant on the edge.

2.1 Ambiguous Current Task State

A computationally efficient solution for the perception system
to obtain the current task state could be an object detector or

a classifier. After that, the cognitive assistant will try to infer
the current task state based on detection results [16].

However, the current task state could be ambiguous for the
following reasons. First, the perceptual module may fail to
detect the objects in the view accurately. For instance, the
object detection algorithm may miss some objects or provide
false detection results. Second, inferring the current task state
on a single frame could be ambiguous as it ignores temporal
relations across frames. For instance, given a frame where a
user has placed one object on top of another, with the new
object occluding the previous one, it is uncertain whether
additional objects have been added or the previous top object
has been removed.

Therefore, we argue that clearly identifying those ambigu-
ous cases when deciding the current task state and resolving
the ambiguity are very important. Otherwise, it may lead to
incorrect instructions towards the task goal. Indeed, the plan-
ner used in this work assumes a fully observable setting and
cannot handle uncertainty stemming from state ambiguity.
While there exist planning paradigms that handle uncertainty
(e.g., contingent and conformant planning [12]), state ambi-
guity can create computational challenges and even cause the
planning system to generate plans that are inappropriate in
the context of the actual state of the world.

2.2 Dynamic User Errors
After we get the current task state, the next step is to figure
out the step-by-step instructions towards the task goal. To
achieve this, we may apply a finite state machine (FSM) for
this task, as in related applications built on top of Gabriel [5].

However, a FSM is limited for many cognitive assistance
applications for the following reasons. First, it is impractical
to list all the possible failure cases that users may encounter
when completing the tasks. Moreover, in real applications,
users may not follow instructions for multiple steps, which
may result in a large number of undefined states in the pre-
defined state machine. Furthermore, it is often infeasible to
update the sequence of states required to achieve the original
goal since normally some sort of corrective action would be
required to either repair or work around the previous mistakes.

Instead, a planner [16] can resolve these issues because
the dynamic planner does not need to fix the states and state
transitions beforehand and it can always generate new plans
if necessary. However, running the planner is time consuming
and triggering the planner for every state transition is inappro-
priate for latency-sensitive cognitive assistance applications.

3 System Design

The overview of our system is shown in Fig. 1. In this figure,
we can see that live video frames are coming from end devices
like smartphones or AR glasses. The frames will be serialized
and sent to the edge server for further processing.



Classifier for the Top Object on
the Sandwich

Sequence of Classification Results:
Bread -> Ham -> Bread

Stack Bread on Ham 
OR

Unstack Ham from Bread

Figure 2: A case of ambiguity when deciding the current task
state based on the information from the perceptual module.

In the edge server, the frames will first go through a percep-
tual module, which could be a classifier or an object detector.
The classification/detection results will then be used to com-
pute the current task state. If there is any ambiguity in this step,
our system will initiate a dialogue with the user to resolve the
ambiguity. Finally, given the up-to-date current task state, the
planner and the state tracker will generate the corresponding
next step instruction to the user.

We will use a sandwich assembly task as an example for
the rest of the paper. This is the same task used in the Gabriel
cognitive assistant and is a good toy example to consider the
key aspects of the system. The user is given a set of ingredients
(e.g. tomato, lettuce, bread) and given explicit instructions to
assemble a particular sandwich.

3.1 Dialogue-based Ambiguity Resolving

We may not be able to compute the current task state because
of partial observability in some applications. For instance, as
shown in Fig. 2, if a user is stacking a sandwich, because of
occlusion, the perceptual module can only detect the top ob-
ject on the sandwich. Initially, the bread is detected followed
by a piece of ham. In this case, the system will assume that
a piece of ham has been put on the bread. However, after
that, if the top object then changes to bread again then the
system could conclude that either a new slice of bread added
or perhaps the ham was taken away. (Many other possibilities
exist, but we will assume the user is cooperative and is only
adding or removing one object at a time.)

In the above case, the system can resolve the ambiguity in
current task state by requesting for clarification from the user.
Previous work [20] suggests that a clarification request should
list all uncertain options when there exist no more than two
options (e.g., “Did you <add/remove> <item1> or <item2>?”.
Otherwise, humans prefer to be asked a Wh-question (e.g.,
“What item did you <add/remove>?”).

3.2 Planner

To address the aforementioned shortcomings of FSMs we
turn to AI planning (e.g., [8, 11]), where the objective is to

generate a partially or totally ordered sequence of actions – a
plan – which transforms some initially specified state of the
world to a desired (goal) state. Research in the field, spanning
many decades, has strived to produce general solutions to this
problem, leading to planners which are not domain-specific.
That is, general-purpose planners have been created, which
are agnostic to problem and domain specific peculiarities
and return a solution, a plan, given some input specified in
a generic and standard format (e.g., the Planning Domain
Definition Language (PDDL) [15]).

Definition 1 (Planning Problem). A planning problem is a
tuple of the form P = (F,A, I,G), where F is a finite set of
fluent symbols, A is a set of actions, I ⊆ F defines the initial
state, and G⊆ F defines the goal state. Each action a ∈ A is
associated with a precondition, Prea, add effects, eff+a , delete
effects, eff−a , and non-negative action costs, COST(a).

A state, s, is a set of fluents that are true (a fluent is a condi-
tion that can change over time). An action a ∈ A is executable
in a state s if Prea ⊆ s. The successor state is defined as
δ(a,s) =((s\ eff−a ) ∪ eff+a ) for the executable actions. The
sequence of actions π = [a1, ...,an] is executable in s if the
state s′ = δ(an,δ(an−1, . . . ,δ(a1,s))) is defined. Moreover, π

is the solution to a planning problem P if it is executable from
I and G⊆ δ(an,δ(an−1, . . . ,δ(a1, I))).

Given a user goal, G, we instantiate a planning problem
P = (F,A, I,G) where I, A and F are predefined. We make
assumptions pertaining to the initial state I that may or may
not hold in the world. To illustrate, we partially model our
sandwich example as a planning problem:

• stack(x,y) ∈ A

– Prestack = {clear(x),clear(y),ontable(x)}

– eff+stack = {on(x,y)} (note: x is on y)

– eff−stack = {clear(y)}

• G = {onTable(bread1),on(ham,bread1),on(lettuce,ham),
on(bread2,lettuce),on(tomato,bread2),on(bread3,tomato)}

Given that initially all of the ingredients are clear and on the
table, one possible solution to the above problem is a plan π =
stack(ham,bread1),stack(lettuce,ham),stack(bread2,lettuce),
stack(tomato,bread2),stack(bread3,tomato).

3.2.1 Interactive State Tracking System

The system guides the user through the execution of π by
providing her with the plan incrementally, one step at a time.
In the beginning, we generate the initial plan π and build a
state machine based on the plan. After that, the vision system
is assumed to observe actions performed by the user (e.g.,
stack(lettuce,ham)) which are then used to update the current
state of the world. More specifically, when the vision system
observes some action a in some state s, the new state will be



Stack Ham 
on Bread

Stack Lettuce 
on Ham

Stack Bread 
on Lettuce

End

Start

Stack Lettuce 
on Ham

Stack Bread 
on Lettuce

End

Stack Tomato 
on Ham

Observed Activity
Replanning

Unstack Tomato
from Ham

Figure 3: State tracking with a planner and state machines.
The green box shows the current expected action.

the successor state δ(a,s). Following the observation of a user
action, we check whether the observed action a matches the
current step of the plan that was given to the user. If yes, we
will provide the next instruction directly based on the state
machine and change the current state in the state machine.
However, if not, we generate a new planning problem where
I is the updated state δ(a,s) and solve it to obtain π′. For
instance, if the user made a mistake such as stacking tomato
on ham instead of stacking lettuce on ham, π′ will correct
the user’s mistake and instruct her to remove the tomato and
place the lettuce instead. An illustrative figure is shown in
Fig. 3. With the new π′, a new state machine is built based
on the new list of instructions. The approach of integrating
the planner with a state machine is advantageous since the
system will not trigger the planner every time as long as the
user is following the plan. Note that we employ here a simple
approach to plan execution and monitoring; the rich body of
related work offers a myriad of solutions (e.g., [7, 8]).

4 Implementation

We built our system on top of the gabriel-sandwich project [9]
with a edge server architecture and adopted the WebSocket to
transfer frames and resulting instructions between the client
and edge server. We have implemented a new Hololens 2
client and added our image classification module, the activity
recognition module and the interactive state tracking module
in the edge server. A video demonstration is available [2].

For the client, as we can see in Fig. 1, it also acts as the
camera source. In our system, we only fetch new frames from
the camera source if there are less than two frames that are
under processing in the edge server. All the other frames will
be dropped at the camera source directly.

In the edge server, for the image classification module, we
adopt the transfer learning method and build our model based
on a lightweight MobileNet v2 backbone network [1], which
could be deployed on a lot of edge devices. We have five
classes in our case, which are bread, tomato, lettuce, ham and
a label for the background class. To fine tuning the network,

we take pictures on the objects in a sandwich toy and prepare
around 60 images for each label. It achieves the accuracy of
more than 99% for both the training set and the validation
set after 20 iterations. In the edge server, we also smooth the
detection results and only report the detection of an object if
it has been detected for four consecutive frames.

As shown in Fig. 2, the top object cannot fully represent
the current task state because different actions may lead to
the same top object. Therefore, we propose a simple activity
recognition method based on the changes of the top objects
and the objects that we already stacked in the pile. For in-
stance, if we have stacked A and B in sequence, we will know
that C is put on B if C is detected right after B. This method
allows us to infer a temporal relation (e.g., cheese stacked
on bread) by leveraging a classifier running on a sequence of
frames. However, if A is detected after B, we need to involve
the user to resolve the ambiguity and figure out whether the
user has put another A on B or it has removed the B on top.

Given the user’s goal (e.g., make a ham sandwich), we
call the fast-downward planning system [10] to generate a
plan, which achieves the goal. The user is then provided with
the first instruction. Following this, when a user action is
observed, we check whether the action matches the current
step of the plan. As described previously, we only call the
planner if the observed action does not match the current
instruction. Otherwise, we directly track the state transitions
based on a state machine derived from the plan. Whenever a
user action is observed, we update the state of the world by
modifying the PDDL file to reflect effects of the action.

0.2 0.3 0.4
Runtime for the planner (s)

0.00

0.25

0.50

0.75

1.00

CD
F

(a) Runtime for the planner.

0.02 0.03
Runtime for the classifier (s)

0.00

0.25

0.50

0.75

1.00
CD

F

(b) Runtime for the classifier

Figure 4: Runtime for the planner and the classifier.

5 Evaluation

In this section, we show the characteristics of running the
planner and the classifier in our experiments.

5.1 Case Study: A Planning Example
We show a planning example in Table 4. In this table, we can
see that the original plan is to stack bread1, ham1, lettuce1,
bread2, tomato1 and bread3 in sequence. However, if we make
a mistake and stack the lettuce instead of ham in the second
step, the planner automatically generates a new plan and the



Classification Result Input Inferred Action Plan

Bread - - [‘stack ham1 bread1’, ‘stack lettuce1 ham1’, ‘stack bread2 lettuce1’,
‘stack tomato1 bread2’, ‘stack bread3 tomato1’]

Lettuce - ‘stack lettuce1 bread1’ [‘unstack lettuce1 bread1’, ‘stack ham1 bread1’, ‘stack lettuce1 ham1’,
‘stack bread2 lettuce1’, ‘stack tomato1 bread2’, ‘stack bread3 tomato1’]

Tomato - ‘stack tomato1 lettuce1’ [‘unstack tomato1 lettuce1’, ‘unstack lettuce1 bread1’, ‘stack ham1 bread1’,
‘stack lettuce1 ham1’, ‘stack bread2 lettuce1’, ‘stack tomato1 bread2’,
‘stack bread3 tomato1’]

Lettuce ‘yes’ ‘unstack tomato1 lettuce1’ [‘unstack lettuce1 bread1’, ‘stack ham1 bread1’, ‘stack lettuce1 ham1’,
‘stack bread2 lettuce1’, ‘stack tomato1 bread2’, ‘stack bread3 tomato1’]

Bread ‘yes’ ‘unstack lettuce1 bread1’ [‘stack ham1 bread1’, ‘stack lettuce1 ham1’, ‘stack bread2 lettuce1’,
‘stack tomato1 bread2’, ‘stack bread3 tomato1’]

Table 1: Recovering from two user errors. The input is the response from the user for the question: have you removed something?

first step in the new plan is to unstack the lettuce. Similarly, in
the third step, if we stack the tomato, the planner will remind
us to unstack the tomato first before going ahead. In the fourth
step, it requires user input because of the ambiguity. After
we respond with ‘yes’, the system can confirm that we have
removed the tomato on top and the newly generated plan also
reflects the changes. As we can see, our planner can recover
from arbitrary mistakes without being explicitly coded.

5.2 Runtime of the Planner and the Classifer

The planner and the classifier are running inside an Nvidia-
Docker container, on a host that has two GTX 1080 Ti GPUs.
The CPU frequency is 3311.00 Mhz and the amount of free
CPU memory inside the container is 4.7 GB. The planner
runs on CPU and the runtime is shown in Fig. 4(a). After a
closer inspection of the runtime, we find out that when the
user has made mistakes, the runtime of the planner is around
0.35 to 0.4 seconds. When the planner is generating the initial
plan, the runtime is around 0.25 to 0.28 seconds. If the user
is following the plan, the searching space is getting smaller
and the runtime of the planner is less than 0.2 seconds. Here,
our planner will search for the optimal solution, which has
the smallest number of steps in the plan and normally takes
longer. We may trade the optimality of the solution for lower
searching time in a time-sensitive application.

Our results show that it is infeasible to run a planner on
every single observation from the perceptual system. Our
approach addresses this by running the planner only when
necessary, translating the resulting plan to a FSM representa-
tion, and thus saves on computation.

The classifier is built on top of the MobileNet v2 backbone
network. The inference time is shown in Fig. 4(b). We can
see that most of the inference time is below 0.02 seconds after
the system has warmed up.

6 Related Work

In this section, we discuss the most closely related work in
cognitive assistance and planning domain.

Cognitive Assistance. Jarvis [16] is the most related work.

It has a perceptual module and a planner to generate dynamic
plans. However, our approach is different in the following
ways. First, we reveal that there are ambiguous cases in the
current task state and we propose to involve the user to resolve
the ambiguity. Second, we obtain the current task state based
on the classification results across multiple frames instead of
one frame as in Jarvis. Finally, we only call the planner when
necessary. Unlike Jarvis, our state-tracking system can be
used to track the progress in cases when the user is following
the plan, alleviating the need to spend computational resources
on executing the planner in those cases.

Another closely related system is Gabriel [9], which also
considers a cognitive assistant supported by the edge. While
Gabriel uses an efficient finite state machine to represent task
states, we propose an interactive planner along with state
machines in order to deal with dynamic conditions (such as
unpredictable user errors), which are often infeasible to be
explicitly specified in a finite state machine. Also, in our
perceptual module, we decoupled classification labels from
task states, which could be more flexible.

Interactive Planning. Chakraborti et al. propose a
projection-aware task planning and execution architecture [4]
where the system can exchange the intents with the collabo-
rating human. Differently, we employ a dialogue module to
communicate with the user in order to disambiguate observed
actions. Furthermore, while their work focuses on a setting
where both the robot and the human are jointly operating in
the world, our work focuses on a setting where the system is
only an observer and the human is the sole executor.

7 Conclusion

Cognitive assistance is one of the key applications on AR en-
abled devices. To build such a cognitive assistant, we propose
to involve the users to resolve the ambiguity of visual per-
ceptions when necessary. Moreover, we propose to employ
automated planning tools as well as execution monitoring
techniques to keep track of the task states, as well as to gen-
erate new plans to recover from users’ mistakes if necessary.
Preliminary results show that the low overhead of our design
may be more amenable to practical deployments.



8 Discussion Topics and Future Work

• What are the appropriate metrics that would clearly
demonstrate the feasibility of a planner-based cognitive
assistant and accurately evaluate the performance under
different scenarios? This is a multi-disciplinary problem
and touches on Systems, HCI, planning, and knowledge
representation.

• Are the infrastructure facilities envisioned in edge cloud
infrastructure sufficient to support cognitive assistants
for every mobile user? Are there infrastructure elements
(e.g. at the level of perceptual detectors or planners) that
can be utilized in a multi-tenant fashion? Muise’s system
is an example of this idea at a small scale [17].

• Specifying a planning domain may be in cases more
complex than specifying a state machine. While we have
effectively created a planning domain for a particular toy
problem, does the approach generalize to other problems
that researchers in the field have studied? Relatedly, it is
worth mentioning the growing body of work concerned
with learning planning domains from textual and visual
inputs which can help mitigate for the human-effort re-
quired to author planning domains (e.g., [3, 22, 23]).
Additionally, there is a body of work concerned with
the development of tools that facilitate the authoring of
planning domains (e.g., [18, 19]).

• As our activity recognition algorithm is based on the
changes of the top objects, we cannot detect the actions
if the user has put some objects on the bottom of the
pile or in the middle of the pile. For the same reason, we
could not detect the activity if the user has put another
instance of the top object to the top.

• In this work, the actions in the plan form a total order
set. We could also extend our system to support partially
ordered actions, which is required by many applications,
by adopting the linear temporal logic (LTL).

• In the current system, we trust the user inputs to resolve
the ambiguity. However, there might exist some “harmful
users”, giving on purpose incorrect information to the
system. To resolve this issue, we may adopt approaches
powered by crowd sourcing [6] to separate “harmful
users” from normal users.

• We also plan to extend the system by providing per-
sonalized instructions to users given the user data or by
learning their behaviour models. We could also provide
more flexible input modalities to improve the usability
of the system.

9 Acknowledgments

We would like to thank Krish Perumal for his help on the de-
sign of the dialogue module. We also gratefully acknowledge
the insightful comments from the anonymous reviewers.

References

[1] MobileNet. shorturl.at/wABVX, 2020. Accessed:
2020-02-14.

[2] Planning-based Cognitive Assistance. https://youtu.
be/RttF2NBBWh8, 2020. Accessed: 2020-02-27.

[3] SRK Branavan, Nate Kushman, Tao Lei, and Regina
Barzilay. Learning High-Level Planning from Text. In
Proceedings of the 50th Annual Meeting of the Asso-
ciation for Computational Linguistics: Long Papers-
Volume 1, pages 126–135. Association for Computa-
tional Linguistics, 2012.

[4] Tathagata Chakraborti, Sarath Sreedharan, Anagha
Kulkarni, and Subbarao Kambhampati. Projection-
Aware Task Planning and Execution for Human-in-
the-Loop Operation of Robots in a Mixed-Reality
Workspace. In 2018 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages
4476–4482. IEEE, 2018.

[5] Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Bran-
don Amos, Guanhang Wu, Kiryong Ha, Khalid Elgazzar,
Padmanabhan Pillai, Roberta Klatzky, et al. An Empir-
ical Study of Latency in An Emerging Class of Edge
Computing Applications for Wearable Cognitive Assis-
tance. In Proc. of the Second ACM/IEEE Symposium on
Edge Computing, page 14. ACM, 2017.

[6] Florian Daniel, Pavel Kucherbaev, Cinzia Cappiello,
Boualem Benatallah, and Mohammad Allahbakhsh.
Quality Control in Crowdsourcing: A Survey of Qual-
ity Attributes, Assessment Techniques, and Assurance
Actions. ACM Computing Surveys (CSUR), 51(1):1–40,
2018.

[7] Christian Fritz and Sheila A. McIlraith. Monitoring
Plan Optimality During Execution. In Proceedings of
the Seventeenth International Conference on Automated
Planning and Scheduling, ICAPS 2007, pages 144–151.

[8] Malik Ghallab, Dana Nau, and Paolo Traverso. Auto-
mated Planning: Theory and Practice. Elsevier, 2004.

[9] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter,
Padmanabhan Pillai, and Mahadev Satyanarayanan. To-
wards Wearable Cognitive Assistance. In Proc. of the
12th annual international conference on Mobile systems,
applications, and services, pages 68–81. ACM, 2014.

shorturl.at/wABVX
https://youtu.be/RttF2NBBWh8
https://youtu.be/RttF2NBBWh8


[10] Malte Helmert. The Fast Downward Planning System.
Journal of Artificial Intelligence Research, 26:191–246,
2006.

[11] James A Hendler, Austin Tate, and Mark Drummond.
AI Planning: Systems and Techniques. AI magazine,
11(2):61, 1990.

[12] Jörg Hoffmann and Ronen I Brafman. Conformant Plan-
ning via Heuristic Forward Search: A New Approach.
Artificial Intelligence, 170(6-7):507–541, 2006.

[13] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick. Microsoft COCO: Common Ob-
jects in Context. In European Conference on Computer
Vision, pages 740–755. Springer, 2014.

[14] Luyang Liu, Hongyu Li, and Marco Gruteser. Edge
Assisted Real-Time Object Detection for Mobile Aug-
mented Reality. In The 25th Annual International Con-
ference on Mobile Computing and Networking, pages
1–16, 2019.

[15] Drew McDermott, Malik Ghallab, Adele Howe, Craig
Knoblock, Ashwin Ram, Manuela Veloso, Daniel Weld,
and David Wilkins. PDDL-the Planning Domain Defi-
nition Language. 1998.

[16] Shiwali Mohan, Kalai Ramea, Bob Price, Matthew
Shreve, Hoda Eldardiry, and Les Nelson. Building
Jarvis-A Learner-Aware Conversational Trainer. In IUI
Workshops, 2019.

[17] Christian Muise. Planning.domains. ICAPS system
demonstration, 2016.

[18] Christian Muise, Tathagata Chakraborti, Shubham Agar-
wal, Ondrej Bajgar, Arunima Chaudhary, Luis A Lastras-
Montano, Josef Ondrej, Miroslav Vodolan, and Charlie
Wiecha. Planning for Goal-Oriented Dialogue Systems.
arXiv preprint arXiv:1910.08137, 2019.

[19] Shirin Sohrabi, Anton V Riabov, Michael Katz, and
Octavian Udrea. An AI Planning Solution to Sce-
nario Generation for Enterprise Risk Management. In
Thirty-Second AAAI Conference on Artificial Intelli-
gence, 2018.

[20] Tom Williams and Matthias Scheutz. Resolution of
Referential Ambiguity in Human-Robot Dialogue Using
Dempster-Shafer Theoretic Pragmatics. 2017.

[21] Xiongwei Wu, Doyen Sahoo, and Steven CH Hoi. Re-
cent Advances in Deep Learning for Object Detection.
Neurocomputing, 2020.

[22] Kristina Y Yordanova. TextToHBM: A Generalised
Approach to Learning Models of Human Behaviour for
Activity Recognition from Textual Instructions. In Work-
shops at the Thirty-First AAAI Conference on Artificial
Intelligence, 2017.

[23] Ziqi Zhang, Philip Webster, Victoria S Uren, Andrea
Varga, and Fabio Ciravegna. Automatically Extracting
Procedural Knowledge from Instructional Texts using
Natural Language Processing. In LREC, volume 2012,
pages 520–527, 2012.


	Introduction
	Background and Motivation
	Ambiguous Current Task State
	Dynamic User Errors

	System Design
	Dialogue-based Ambiguity Resolving
	Planner
	Interactive State Tracking System


	Implementation
	Evaluation
	Case Study: A Planning Example
	Runtime of the Planner and the Classifer

	Related Work
	Conclusion
	Discussion Topics and Future Work
	Acknowledgments

