
1

Low Latency Big Data Processing without
Prior Information

Zhiming Hu, Member, IEEE, Baochun Li, Fellow, IEEE, Zheng Qin, Member, IEEE
and Rick Siow Mong Goh, Member, IEEE

Abstract—Job scheduling plays an important role in improving the overall system performance in big data processing frameworks.
Simple job scheduling policies, such as Fair and FIFO scheduling, do not consider job sizes and may degrade the performance when
jobs of varying sizes arrive. More elaborate job scheduling policies make the convenient assumption that jobs are recurring, and
complete information about their sizes is available from their prior runs. In this paper, we design and implement an efficient and
practical job scheduler for big data processing systems to achieve better performance even without prior information about job sizes.
The superior performance of our job scheduler originates from the design of multiple level priority queues, where jobs are demoted to
lower priority queues if the amount of service consumed so far reaches a certain threshold. In this case, jobs in need of a small amount
of service can finish in the topmost several levels of queues, while jobs that need a large amount of service to complete are moved to
lower priority queues to avoid head-of-line blocking. Our new job scheduler can effectively mimic the shortest job first scheduling policy
without knowing the job sizes in advance. To demonstrate its performance, we have implemented our new job scheduler in YARN, a
popular resource manager used by Hadoop/Spark, and validated its performance with experiments in both real testbeds including
Amazon EC2 and large-scale trace-driven simulations. Our experimental and simulation results have strongly confirmed the
effectiveness of our design: our new job scheduler can reduce the average job response time of the Fair scheduler by up to 45% and
achieve better fairness at the same time.

Index Terms—job scheduling, big data processing, multilevel feedback queue

F

1 INTRODUCTION

RANGING from recommendation systems to business
intelligence, the use of big data processing frameworks,

such as Apache Hadoop [2] and Spark [3], to run data
analytics jobs that process large volumes of data has become
routine in both academia and the industry. As a large
number of jobs are submitted on a real-time basis, it is
important to schedule them efficiently to improve their
overall performance and the utilizations of cluster resources.

To achieve these objectives, one of the important per-
formance metrics that job scheduling policies are designed
to optimize is the average job response time, defined as the
time elapsed from when a job is submitted till when it
is complete. From the perspective of the overall system,
minimizing job response times gives priorities to smaller
jobs, and thus relieving them from the head-of-line blocking
problem caused by long running jobs. From the perspective
of users, lower job response times can help them to obtain
their results faster and thus have the potential to increase
the financial revenue.

Simple scheduling policies, such as first-in-first-out
(FIFO) and Fair scheduler [4], do not consider job sizes at

• Zhiming Hu and Baochun Li are with the Department of Electrical and
Computer Engineering, University of Toronto, Toronto, Canada, M5S
2E4.
E-mail: zhiming@ece.utoronto.ca, bli@ece.toronto.edu.

• Zheng Qin and Rick Siow Mong Goh are with the Institute of High
Performance Computing, A*STAR, Singapore, 138632.
E-mail: {qinz, gohsm}@ihpc.a-star.edu.sg.

• Preliminary results were presented in Proceedings of the IEEE ICDCS,
2017 [1].

all and may suffer from long job response times in many
cases. With FIFO, small jobs would be delayed if there exist
large jobs ahead of them, a common situation in a shared
cluster. With Fair scheduling, the scheduler is downgraded
to processor sharing when multiple long-running jobs are
submitted together, and its performance becomes much
worse than scheduling the jobs one by one. The moral of
this story is, schedulers that are oblivious to job sizes may
not provide the best possible average job response times in
many cases.

There has been a wide variety of existing job scheduling
policies that are proposed to reduce the average job response
time by assuming that the complete information on job
sizes is known a priori [5], [6], [7], mostly for recurring
jobs. If this assumption is valid, shortest job first (SJF) or
shortest remaining time first (SRTF) becomes good candi-
dates. However, we argue that this assumption is neither
practical nor valid in many cases. First, in a shared cluster,
resources such as network and I/O bandwidth are shared
among applications, which makes the running times differ-
ent across multiple runs even for the same job. This situation
becomes even worse if jobs span across geo-distributed data
centers [8], [9], [10], [11], where available capacities between
data centers vary more significantly over time [12]. Second,
even if we can perfectly isolate resources, it is still difficult to
estimate the running times of non-recurring jobs with low
overhead (Sec. 2). Without accurate estimates of job sizes,
existing algorithms may degrade the overall performance
by a substantial margin. For example, if the size of a long
running job is under-estimated, it may be placed ahead of
other smaller jobs and delay all of them.

2

In this paper, we design and implement an efficient and
practical job scheduler in big data processing frameworks,
without knowing the job sizes ahead of time. The highlight
of our design is a multi-level job queue, which is used to
separate short jobs from large jobs effectively and to mimic
the shortest job first scheduling policy without assuming
known job sizes. Our new job scheduler is also able to avoid
fine-grained sharing for jobs with similar sizes because
these jobs will enter the same queue eventually and will
be scheduled one by one in that queue. To further improve
the performance, we also carefully design efficient ways to
schedule jobs in the same queue and across different queues
in our system.

Our algorithm is partially motivated by the least at-
tained service (LAS) policy [13]. By serving the job that
has received the least service so far, LAS is a preemptive
scheduling policy that favors small jobs without knowing
the job sizes beforehand. The implicit assumption is that,
if a job receives the least service, it is likely to be small,
and should be granted a higher priority. This assumption
works remarkably well if the job sizes follow a heavy-tailed
distribution [13] by mimicking the SJF policy. However, if
the job sizes are similar, LAS would be downgraded to
processor sharing, and suffer from longer average response
times. Our new algorithm is designed to avoid such pitfalls.

To be realistically deployed in big data processing sys-
tems, our design takes practicality as one of the important
objectives. For this reason, we should always keep an eye on
the real-time resource demands of each job, as it most likely
does not need resources across the entire cluster, which is
different from flow scheduling in network switches. More
specifically, we should avoid assigning resources to tasks
that cannot be started at the time of scheduling in a job. For
example, reduce tasks depend on the output of map tasks,
and will only start after the map tasks complete1. It would
be a waste of resources to allocate slots for reduce tasks too
early during the scheduling.

Though on the surface our proposed approach looks
similar to a priority queue with aging, it is, in fact, re-
markably different in the following three perspectives. First,
our approach only reduces the priority of the jobs based
on the amount of service they have received, while the
aging method will increase the priority when the jobs wait
for a longer period of time. Second, our approach is able
to reduce the average job response time while the general
priority queue with aging will not be able to. Finally, we
have a completely different method to avoid the starvation
problem by assigning resources to not only higher priority
queues, but to lower priority queues as well.

Highlights of our original contributions in this paper are
as follows. First, we address the problem of job schedul-
ing without prior information in data-parallel frameworks,
such as Apache Hadoop and Spark. Second, we propose a
new strategy to obtain the amount of service that each job
would receive in the current stage, which can identify large
jobs more quickly. Finally, we introduce a new mechanism
for scheduling jobs in each queue, which outperforms the
widely used FIFO in existing systems [14], [15].

1. We do not consider stage overlaps in this paper.

To demonstrate the performance of our new scheduler,
we have implemented it in YARN, a popular open-source
resource allocation framework for modern big data process-
ing systems (e.g., Hadoop and Spark). Both our experimental
and trace-driven simulation results have strongly validated
the effectiveness of our design. More specifically, our exper-
imental results on real-world datasets have shown that the
average job response time can be reduced by up to 45%, as
compared to the Fair scheduler in YARN.

2 MOTIVATION

Information about job sizes is critical for superior job
scheduling performance, and most previous works assume
that such information is known or can be accurately esti-
mated beforehand. However, as we have briefly discussed,
information about job sizes may not be realistically available
for the following practical reasons.

Many jobs are ad hoc jobs. It is shown that the percentage
of recurring jobs is around 40% in the production workload
at Microsoft [16], which also implies that more than half
of the jobs are ad hoc jobs. Ad hoc jobs would only run
once; Thus either the programs or inputs are new, which
makes it difficult to predict the running times of tasks or
jobs. Some people may argue that if we cannot estimate the
running time of the job before it is started, can we estimate
the job size after it finishes a part of its tasks? Although
it is conceivably feasible to estimate the completion times
of tasks in the same stage if straggler tasks in each stage
are properly handled, it is almost impossible to predict the
completion times of tasks in future stages before the stages
are started.

Data skews are common in each stage. For Hadoop/Spark
jobs, the ideal case is that the running times of the tasks
in the same stage are similar. However, this is not the case
in the real workloads. In the map phase, even if the input
sizes for each map tasks do not vary a lot, some records are
just “larger” or “more expensive” than others [17]. For ex-
ample, in graph processing applications, nodes with higher
degrees are more computational and network intensive than
other nodes. In the reduce phase, skews are more common
because of the partition algorithms, where the intermediate
results are distributed to the reduce tasks by hashing the
keys, which can make them unevenly distributed. Therefore,
in the reduce stage, different input sizes could be the main
reason for skews, and it may also suffer from the type of
skews as in the map phase even if the input sizes are the
same [17].

Different stages have distinctly different running characteris-
tics. It is hard to estimate the completion times of the tasks
in later stages based on the completion times of completed
stages because stages are completely different regarding
task types and the numbers of tasks [3]. For instance, in
Hadoop, the map stage is entirely different from the reduce
stage. In Spark, stages usually have completely different
operations on their Resilient Distributed Datasets (RDDs).
Therefore, though we may know the completion times of
stages that have finished, we still have no idea about the
completion times of pending stages. In other words, we are
still not able to predict the completion times of the entire job
before it is complete.

3

CBA

A

B

0 1 2 3 9

(a) LAS.

CBA

A

0 1 2 3 9

B

6

Q 2

Q 1

(b) LAS with 2 queues.

Fig. 1. Multilevel queue for LAS: a motivating example.

Even for recurring jobs, resource sharing and unstable net-
works can also cause unpredictable running times. Normally,
the network and I/O bandwidths are resources that are
shared across concurrent jobs in the same cluster. Moreover,
in some cases, the amount of available bandwidths could
vary with time significantly. For instance, in geo-distributed
data analytics, the capacities between data centers vary
quite significantly with time — as shown in [12], the 95th
percentile value could be several times larger than 5th per-
centile value within 35 hours. In these cases, unfortunately,
even recurring jobs may have unpredictable performance
regarding job completion times.

2.1 A Motivating Example

As job size information is not known at the time of schedul-
ing, we wish to schedule jobs without prior information
about job sizes. Least attained service (LAS) is known as one
of the best scheduling policies for this case, especially for
jobs following heavy-tailed distributions [13]. Even though
some workloads of big data processing systems do follow
heavy-tailed distribution in the long run [16], we cannot
directly apply LAS in the real systems. The most important
reason is that workloads in the short term are dynamic and
multiple large jobs may be in the system concurrently, which
may greatly deteriorate the performance of LAS.

In this paper, we propose an approach based on multi-
level queues. A motivating example is shown in Fig. 1. In
this figure, there are three jobs (A, B, C), whose sizes are 4,
4, 1, respectively. If the job size is x, it means that the job
will take x unit of time to finish when it can run alone in the
cluster. Fig. 1(a) shows the scheduling results of LAS where
A is admitted into the system first. At time 1, B arrives and
A is thus preempted. A similar case also happens when C
comes at time 2. At time 3, C is complete. A and B start to
share the resources evenly as they have received the same
amount of service2 at this time. From this figure, we can
see that small jobs can still finish before large jobs through
preemption (job C). However, when there are several large
jobs, LAS is downgraded to processor sharing. Instead, if we
design a multilevel queue to separate large jobs from small
jobs and schedule these jobs one by one in each queue, we
can mitigate this issue as we can see in Fig. 1(b). In this
figure, there are two queues where the jobs in the first queue
have higher priorities than the jobs in the second queue. The

2. The amount of service is calculated by the product of the amount
of resources and the amount of time in using the resources.

scheduler will always schedule the jobs in the queue with
the highest priority first. Therefore, in this case, A and B are
demoted to the second queue after they used the cluster for
one unit of time. Then C obtains the resources and starts
to run. After C is complete, the first queue is now empty
and we can now start to schedule the jobs one by one in the
second queue. In the results, the response times of B and
C are the same. While the response time of job A has been
shortened from 9 to 6, which is reduced by 33%.

There are two lessons behind this simple motivating
example. First, multilevel priority queue can effectively sep-
arate large jobs from small jobs and place them in different
queues. Like the example in Fig. 1, A and B are identified
as larger jobs and thus are demoted to the second queue.
Therefore, it can mimic the shortest job first strategy effec-
tively. Second, we can avoid the processor sharing problem for
large jobs if we schedule the jobs one by one in each queue.
For example, in Fig. 1(b), we schedule job A first followed
by job B and we can mitigate the processor sharing issue in
Fig. 1(a). In sum, we can reduce the average job response
times because we can effectively mimic the shortest job first
strategy and we can avoid the processor sharing problem
existed in algorithms like FAIR and LAS.

2.2 Desirable Features

Given the motivating example, we can know that we can
improve the performance by adopting the multilevel queue
and a wise scheduling strategy in each queue. Before we
introduce our design, here we list a few desirable features
for our system.

Practical: Our system is first designed to be practical. To
achieve practicality, we should not make assumptions about
the job size information and our system should be ready
to be applied in popular resource allocation frameworks
such as YARN [18] and Mesos [19]. To this end, it should
only depend on the inputs that are readily available in
those frameworks, which means that we should not use the
information that are not available.

Efficient: Our scheduling system should also be efficient
as the number of jobs running at the same time could be
large. Therefore, the scheduling algorithm should be able
to gather the inputs and delivery the scheduling results
quickly. This property is also the main reason why sim-
ple heuristic scheduling algorithms instead of sophisticated
ones are adopted in big data processing frameworks like
Hadoop and Spark.

Robust: Robust means that our system need to meet the
following requirements. First, it should be adaptable for a
variety of workloads. Second, robust means that the sched-
uler should be able to react to the current job progresses
instead of static scheduling that does not make any changes
to the scheduling results until the job finishes. This property
is very important because running times of small jobs could
become large for stragglers or high resource contention. The
desired scheduler should be able to adjust its scheduling
results adaptively for these cases.

Job response time: Minimizing the average job response
time is the ultimate goal of our system, which is an impor-
tant factor to achieve users’ satisfaction. Our system should
achieve lower job response times under different workloads

4

compared to classical scheduling algorithms like first-in-
first-out (FIFO) and Fair scheduling. Moreover, we also aim
at reducing the long tail job response time as well.

2.3 Problem Formulation
After we have talked about the motivations and desired
properties, now let us have a look at the problem itself.

Generally, it is a resource allocation problem. Let us
assume that there are m jobs and the completion time of
i-th job is represented by fi. There are n types of resources
in the cluster, and the resources in the cluster are specified
by C = {C1, C2 . . . Cn}, where Cr is the amount of the r-
th resource in the cluster. We use dir to show the resource
demand of the i-th job on the r-th resource. The total
number of time slots is τ and amount of r-th resource
allocated to i-th job at t-th slot is xtir. More formally, the
problem can be formulated as follows:

min
x

m∑
i

fi (1)

s.t. fi = {max t |xtir > 0}, ∀i (2)
m∑
i=1

xtir ≤ Cr, ∀r, ∀t (3)

τ∑
t=1

xtir = dir, ∀i,∀r (4)

xtir ∈ Z0. ∀i,∀r, ∀t (5)

Job response time is calculated by job completion time
minus job submission time. In the objective function, we
only minimize the summation of job completion times be-
cause job submission times are fixed in the scheduling. The
first constraint (2) is to define the job completion time, after
which, it would not receive any resource from the scheduler.
The second constraint (3) is to guarantee that the resource
limits of the cluster are met for all the resource types at any
time. The resource requirements of the job is listed in (4). The
last constraints shows that each allocation in each time slot
is an integer because we can only use integers to represent
some resources like CPU cores. As we can see, the problem
here is an integer programming problem with a non-linear
constraint in Eq. (2), which cannot be solved efficiently.
What’s worse, we do not know the job sizes dir in Eq. (4) in
the cases if we do not know the prior information about job
sizes beforehand, which makes it far from practical to solve
this problem. Therefore, we focus on practical and efficient
heuristic approaches.

3 SYSTEM DESIGN

We are now ready to present more details of our system
design.

3.1 Design Overview
Referred to as LAS_MQ, our new scheduling policy is based
on a multilevel queue. An overview of our design is shown
in Fig. 2. There are k queues in our scheduler, and a job is
demoted to a lower priority queue if the amount of service
that it has received so far exceeds the threshold of the job’s

…

Q 1

Q 2

Q k-1

Q k

Job 5 Job 6

Job 4Job 3

Job 2

Job 1

New
Jobs

Low

High

Priority

Fig. 2. The design of LAS_MQ: an overview.

current queue. Thus, there would be k − 1 thresholds for
the first k − 1 queues: α1, α2. . .αk−1.

In this context, LAS_MQ works as follows. All the new
jobs are submitted to the first queue (Queue 1), which has
the highest priority. After that, jobs whose received service
exceeds i-th threshold αi (i < k) would be moved to the
queue that has the threshold larger than the amount of
received service. Those jobs, whose received service is larger
than the threshold of (k − 1)-th queue, would be placed
to the last queue. With this strategy, small jobs can obtain
enough service in the topmost several levels of queues and
finish faster, while large jobs would be moved to lower
priority queues to free up the resources for small jobs.
Therefore, our design can effectively reduce the average
job response time by mimicking a shortest job first (SJF)
approach without knowing the job sizes beforehand.

Besides the rules of moving jobs across queues, we also
need to decide the scheduling policies across queues and in
each queue. Across queues, we adopt weighted sharing to
avoid starvation in lower priority queues. This is because in
our design, new jobs first go to the highest priority queue.
If new jobs keep coming and we do not allocate resources
to lower priority queues, it would cause job starvation in
these queues. With weighted sharing among queues, small
jobs can still finish very rapidly, while large jobs can also
obtain a certain amount of resources and keep progressing.
The scheduling policy in each queue is also very important
for the performance of our scheduler. We will present more
details in Sec. 3.3.

3.2 Obtaining the Amount of Service Received So Far

As we have stated previously, jobs are moved across queues
based on the amount of service that they have received so
far. In this section, we will discuss how we calculate the
amount of service received by each job so far.

In YARN, resources are organized into containers and
the completion times of jobs will be different if there are
more (or less) containers allocated. Thus we cannot simply
take the job completion time as the job size, and should also
take the number of containers used into consideration. For
this reason, in our case, if x containers are allocated to the

5

job for t seconds, the amount of service that job j received
js in that period is defined as follows:

js = x · t. (6)

When it comes to the amount of service received by the
jobs so far, we would aggregate the products of duration
and the number of containers in each scheduling period. For
instance, if in the first round, the job is allocated 1 container
for 5 units of time, and it is then allocated 2 containers for
3 units of time in the second round, the amount of service
received by the job is 1 · 5 + 2 · 3 = 11 container time. If in
the scheduling period, the number of containers allocated to
the job is 0, then the amount of service received by the job
would not increase with time either.

However, as we have found out, we do not necessarily
have to wait for the completion of the current stage to know
the amount of service that a job would receive in this stage.
We can estimate the amount of service that the job would
receive in the stage, using the received amount of service so
far in this stage divided by the progress of the stage. This
method is also referred to as stage awareness in this paper.

There are several reasons for this strategy. First, if we can
identify large jobs more quickly and thus move these jobs
to lower priority queues faster, we can free up the resources
sooner for small jobs instead of waiting for the threshold
of the queue to be reached. Second, stage progresses, which
indicate the percentage of data that has been processed so
far in the stage, are available for both Hadoop and Spark,
and can be used for estimating the amount of service that
the job would receive in that stage. This strategy assumes
that the progress rate of the stage is stable. In realistic
cases, the progress rate of one stage may become faster in
applications like Hadoop or Spark [20]. Therefore, we would
sometimes over-estimate the amount of service that the job
would receive in the stage.

The good news is, over-estimates have little impact
on the scheduling results compared with under-estimates,
because over-estimates only affect the completion time of
the job itself [21]. The intuitive reasons are as follows. For
shortest job first like strategies, if we under-estimate the job
size, we may give it higher priority than it should have,
which will delay a lot of jobs with smaller job sizes than this
job. However, if we over-estimate the job size, the job is just
scheduled in the later part of the job queue, which would
mostly affect the response time of the job itself.

In sum, stage awareness works as follows. For example,
in the map stage of Hadoop, if the stage has received 10
container time, and the stage progress is 10%, the estimated
amount of service that the job would receive in the map
stage is 10

10% = 100 container time. Using this approach,
we can move the jobs to proper queues more quickly. In
the implementation, we only apply the stage awareness
when the stage progress is no less than 10% because the
estimations are more accurate after the stages have been
executed for more than 10%.

The amount of service received so far can be calculated
by adding the amount of service that the job would receive
in the current stage (estimated value) and the amount of
service received in previous stages (precise value) together,
which is then used to decide which queue the job would
be moved to. Later in this paper, we will show that stage

awareness is remarkably effective for improving the perfor-
mance.

3.3 Job Ordering in Each Queue

After we know how jobs are moved across queues, we also
need to decide the scheduling policy in each queue. For this
issue, the most important requirement for our design is that
the ordering in each queue should not change frequently,
which may cause fine-grained sharing as what LAS does.
Thus FIFO is a good start for this task, however we can do
better by incorporating application-specific characteristics.

We propose to order the jobs by the number of con-
tainers that would be used by the remaining tasks of the
job including running tasks. There are two reasons for this
strategy. First, it is similar to FIFO and schedules jobs one
by one. The order would not change too much because the
number of remaining tasks of those jobs at the front of the
queue would become smaller, and those jobs will remain at
the front of the queue. Second, as the amount of resources
allocated to each queue is fixed, assigning resources to jobs
with smaller resource requirements can allow more jobs to
finish their remaining tasks faster.

Case 1 Case 2 Case 3 Case 4

Different Design Options

0

0.5

1

1.5

2

N
o
rm

al
iz

ed
 A

v
er

ag
e

Jo
b
 R

es
p
o
n
se

 T
im

e

Fig. 3. Case 1 represents the traditional design without either feature.
Case 2 shows the result with stage-awareness only. Case 3 shows the
result only with job ordering in each queue. Case 4 shows the result with
both features. All the results are normalized over the Fair scheduler in
YARN.

To demonstrate the benefits of stage awareness and job
ordering in each queue, we compare the performance of
different cases with Fair scheduling and show the results
in Fig. 3. We use 100 Hadoop jobs in this case and the
experiments are conducted multiple times. The job arrivals
follow Poisson distribution and the mean interval of job
arrival is 50 seconds. The normalized average job response
time is calculated by dividing the average job response time
of Fair scheduler by the average job response times of our
algorithms. In this figure, we can see that, without these
two features, the scheduler only slightly outperforms the
Fair scheduler as seen in Case 1. With stage awareness, we
can improve the performance by around 10% in the best
case, as we can see in Case 2. Moreover, we can increase
the performance by a wide margin with our job ordering
strategy in each queue as shown in Case 3. If we only
examine Case 1 and Case 2, it seems that stage awareness

6

only provides marginal improvements. However, in Case
4, we can see that stage awareness can further improve
the performance compared with Case 3. Case 4 is also our
current design with both of these features.

3.4 Resource Allocation with Dependencies
We have discussed how jobs are moved across queues and
in each queue, but have not yet addressed the amount
of resources we should allocate to the job that would be
scheduled next.

There are two factors that need to be considered for
scheduling jobs. First, most jobs do not need to be allocated
all the resources in the entire cluster. Thus, we need to focus
on the real demand of the job when it is to be scheduled.
Second, jobs have dependencies among stages, therefore we
should not allocate resources to tasks that are not ready. For
instance, Hadoop jobs have dependencies among map tasks
and reduce tasks. We would allocate resources to map tasks
first and only allocate resources to reduce tasks after the map
stage is complete.

Based on these principles, for Hadoop/Spark jobs, we
calculate the demand and allocate the resources to the jobs
stage by stage. We only consider the number of remaining
tasks in the current stage when calculating its demand. After
that, we assign the number of containers according to the
number of remaining tasks to the job if there is a sufficient
number of containers available.

3.5 DAG Awareness and Work Conservation
Even though we allocate the resources stage by stage, there
are some cases that the later stages are hanged by a few
pending tasks in the previous stage. This phenomenon is
also identified in [5], where the jobs that have finished more
than 85% or 95% of the tasks in a stage will be given higher
priorities. In our case, we find out that our job ordering
strategy in each queue can handle this situation well. For
instance, if there are only a few reduces tasks are left for
a job, there is a high chance that the job is placed in the
front part of the queue. If there is only a few map tasks
pending instead, the situation is similar because the number
of reduce tasks is normally much smaller than the number
of map tasks.

Besides DAG awareness, work conservation also plays
an important role in our algorithm. By enabling work con-
servation, we can increase the utilizations of computing
resources in the cluster. Thus it can effectively improve the
overall performance.

3.6 The Number of Queues and Thresholds of Queues
As our scheduler employs multiple queues, we need to de-
termine the optimal number of queues k and the thresholds
of queues, while ensuring that the average job response time
is minimized.

If strict priority is enforced among queues, which means
that jobs in the i-th queue can only start after all the jobs
from the first queue to the (i−1)-th queue are complete, and
FIFO is used in each queue, a theoretical way to derive the
optimal thresholds and the number of queues is proposed
in [14]. However, we propose to adopt weighted fair sharing

among queues, with specific ordering in each queue. The
methods in [14] cannot be directly applied in our case.
Instead, we propose a simpler approach as stated in [15]
where the thresholds for different queues increase exponen-
tially. The reason for the exponentially increased thresholds
of queues is because we can separate the jobs better with
a much smaller number of queues if the job sizes follow
heavy-tailed distribution compared with linearly increased
thresholds. In other words, if the size of the largest job is s,
then the number of queues k = dlog(s)e. If the threshold of
the first queue α0 and the step p are decided, the threshold
of each queue can then be computed using the formula
αi+1 = p · αi.

In realistic cases, our algorithm works very well in a
variety of settings. In our experiments, we simply set the
number of queues as 10 and the threshold of the first queue
as 100. We will also show the performance of our approach
with a varying number of queues and different thresholds
for the first queue in our evaluations.

Algorithm 1: Update Job Orders

1 for i = 1 to k do
2 The set of jobs in i-th queue is denoted by set Qi;
3 for job j ∈ Qi do
4 Update the amount of service jm that job j

received so far, optimized by stage awareness;
5 if jm > αi then
6 Delete the job from Qi;
7 Add the job to the queue that has larger

threshold than jm;
8 end
9 end

10 Sort jobs in Qi according to the number of
containers that would be used by their remaining
tasks.

11 end

Algorithm 2: Job Scheduling

1 Allocate all the containers to the queues according to
weights of queues. The number of containers
allocated to the i-th queue is denoted by ri;

2 The number of containers needed by the remaining
tasks of job j in the current stage is represented by
jrt;

3 for i = 1 to k do
4 for job j ∈ Qi do
5 if ri > 0 then
6 Allocate x = min(ri, jrt) slots to the job j;
7 ri = ri − x;
8 else
9 break;

10 end
11 end
12 end
13 Share the remaining containers to all the jobs if there

is any.

7

3.7 Summary
Overall, our scheduling algorithm works as follows. First,
new jobs would be admitted to the end of the first queue,
which is also the highest priority queue. After that, for new
events like completions of map/reduce tasks or jobs, we
would update the amount of service received by jobs and
move the jobs across queues if necessary. During the update,
we would also sort the jobs in each queue by the number
of containers that are needed for the remaining tasks. The
algorithm of updating job orders is shown in Algorithm 1.
The complexity of the algorithm is O(kn log n) if the total
number of jobs is n.

Second, in the scheduling part, we retrieve the number
of ready tasks of the next job in the first non-empty queue
and allocate the number of containers according to the
number of ready tasks. After that, if there are any remaining
resources, we would allocate the resources to other jobs in
that queue.

Third, our scheduling policy also meets the requirements
for work conservation. After we finish assigning containers
to all the running jobs, if there are remaining containers,
we would assign those containers evenly to all the running
jobs. One of the advantages for this is that each job can have
more resources than it needs, and it can then launch a few
speculative tasks that may further improve the performance.
Our job scheduling algorithm is shown in Algorithm 2. The
complexity of the algorithm is O(kn).

4 IMPLEMENTATION

We have implemented our algorithm as a plug-in scheduler
in YARN, in the context of Apache Hadoop 2.4.0. The overall
design of our implementation is shown in Fig. 4. In our
design, it contains three major components: job admission,
job scheduler and resource manager (YARN). We can see
that when a new job is submitted to the system, it would
first go through the job admission module. In our case, we
only control the total number of running jobs because too
many running jobs may cause hanging. If the total number
of running jobs is smaller than the limit, then the job is
admitted and queued for its share of resources. If not, the
job will still be in the queue of pending jobs.

Our scheduler is built on top of capacity scheduler [22].
In capacity scheduler, it can change the capacities of queues
by updating the configuration file on a real-time basis.
In our implementation, each application is assigned to a
unique queue. Thus, we can control the amount of resources
for each application by setting the capacities of queues.
After the scheduling process, if the number of containers
allocated to the application is above zero, the new job will
be submitted to the cluster and start running. During the
lifetime of the job, we keep monitoring the job’s running
status such as task completion events and stage progresses,
which are part of the inputs for our scheduler. When a job
completes, the job admission module will be notified, and it
will check whether all the jobs have completed. If not, it will
admit more jobs to the scheduler. Here we also record the job
response time as the gap between the job completion time
and the time when the job is admitted into the scheduler.

In the scheduler, the unit of allocation is a container with
one vcore and 2 GB of main memory. In our case, the total

Job
Scheduler

New Job Job Admission

Yarn/
Hadoop

Update Capacities of
Queues

Update Task/Job
Status

Submit

New Job Arrival Job Completes

Fig. 4. Implementing the LAS_MQ scheduler: overall design.

number of containers in the cluster is fixed and bounded by
the total amount of resource in the cluster. The scheduling
problem now becomes how to decide the number of con-
tainers that should be allocated to each job. We keep track
of the number of remaining tasks in the current stage of jobs
during the scheduling process to calculate a proper number
of containers to it.

Obtaining the number of remaining tasks in the current
stage of the job is thus very important. In our implementa-
tion, we calculate the remaining number of tasks by using
the total number of tasks minus the number of successfully
completed tasks. Therefore, the first problem is how to
obtain the total number of map/reduce tasks for a job. For
Hadoop jobs, we can set the number of map/reduce tasks,
however, the real total number of tasks especially the map
tasks could be different from the values in the configura-
tions. We solve this issue by examining the number of splits
of the inputs after the job is submitted to the cluster, looking
for the total number of maps and reduces. The second issue
is how we get to know the number of successful map tasks
or reduce tasks. To the best of our knowledge, there are no
available counters that we can directly use for this piece
of information. We propose to store all the incoming task
events of the job, filter out those unsuccessfully finished
tasks and count the number of successful tasks accordingly.

After we know the number of remaining tasks in the
stage, we allocate the calculated number of containers or all
the remaining containers in the cluster, whichever is smaller.
Here, the calculated number of containers might be different
from the number of remaining tasks, because we usually
allocate two containers for each reduce task as reduce tasks
need more memory than map tasks. Note that the number of
remaining tasks does not count the number of tasks in other
remaining stages because the tasks in remaining stages can
only start after the current stage completes.

Currently, our prototype is implemented with Hadoop
applications. But our design is also compatible with other
big data processing frameworks like Spark [3]. The reasons
are twofold. First, we allocate resources stage by stage,
which is initially supported in Spark. Second, It is also very
convenient to know the number of tasks in each stage and
whether a stage is shuffle dependent.

5 PERFORMANCE EVALUATION

In this section, we present the experimental and simulation
results of our scheduler.

8

5.1 Experimental and Simulation Setup

Private Testbed: Our testbed consists of 4 workstations,
each with 120 GB of main memory and 56 Intel Xeon
CPU E5-2683 v3 @ 2.00 GHz. The capacities between those
workstations are 10 Gbps.

In this testbed, we have four slave nodes, one of which
is also the master node of YARN and Hadoop Distributed
File System (HDFS) [2]. The size of main memory allocated
for each NodeManager is 60 GB in each node and the sizes
of memory for map tasks and reduce tasks are 2 GB and 4
GB, respectively. Thus we can start up to 120 containers at
the same time. In HDFS, the block size is 128 MB and the
replication factor is 2.

Amazon EC2: As the cluster size of our private testbed is
limited, we also conduct extensive experiments in Amazon
EC2. Our cluster consists of 16 m4.xlarge instances, of which
15 nodes are used as slave nodes. Each instance has 4 vCPU
cores and 15 GB of main memory. The master node and
each slave node have 200 GB and 50 GB of solid state disk
(SSD) as the storage, respectively. In the settings for YARN,
the size of main memory allocated for each NodeManager
is 8 GB. Thus we can start 4 containers in each node and
60 containers at most for the whole cluster. In HDFS, the
replication factor is 3. All the other settings are the same as
the ones in private testbed.

Workload and Inputs: Our workload contains 100 jobs
for the experiments in the private testbed and 30 jobs in
the EC2. All the jobs are randomly selected from TeraGen,
SelfJoin, Classification, HistogramMovies, HistogramRatings, Se-
quenceCount, InvertedIndex and WordCount, all of which are
popular jobs for benchmarking Hadoop in PUMA bench-
marks [23]. The job arrivals follow the Poisson distribution.
We have tried different intervals for job arrivals, which will
be stated in our experimental results.

The inputs are from the PUMA datasets [23]. For SelfJoin
we use synthetic data and we use real datasets for all the
other jobs. More specifically, for SequenceCount, InvertedIndex
and WordCount, the inputs are from Wikipedia datasets. In
Classification, HistogramMovies, HistogramRatings, the movie
dataset is used. The workload is divided into four bins
according to the sizes of inputs.3 More details about the
workloads and inputs are available in Table 1 and Table 2,
respectively. The main differences are that the workloads
used in the Amazon EC2 has smaller input sizes for the
WordCount and the total number of jobs is changed to 30
because of the resource limitations.

Simulator: We have implemented an event-driven sim-
ulator for the simulations and we use both workloads fol-
lowing heavy-tailed and uniform distribution to evaluate
the performance of our scheduler. For the heavy-tailed case,
the trace was collected from a Facebook cluster in 2010 [24],
which consists of 24,443 jobs. We calculate the job sizes by
summing up the amount of data processed by each job
including input data, intermediate data and output data.
The job sizes are further normalized based on the loads of
the system [21]. In this case, the load is set to be 0.9. The
final job sizes follow the heavy-tailed distribution. For the

3. For TeraGen, we do not need to define the input size and we set
the output size instead.

case of light-tailed distribution, we generate 10,000 jobs, all
with the size of 10,000.

Baselines: We compare our approach, LAS_MQ with
the LAS, FAIR, FIFO scheduler, which is the default order-
ing policy in capacity scheduler, equally sharing scheduler
(EQU) and the scheduler with complete job sizes (IDEAL),
which serve as the optimal solution for the problem. For the
Fair scheduler, it allocates resources to jobs according to the
priorities of jobs. In our workload, the priorities of jobs are
randomly generated integers ranging from 1 to 5. For the
equally sharing scheduler, it equally shares the resources
to all the running jobs in the system. The scheduler with
complete job sizes needs to run each job once and gather the
running information of jobs such as the running time of map
tasks and reduce tasks as the input. Then it simply applies
the shortest job first strategy to schedule all the running jobs.
The remaining job sizes are calculated by the summation of
the products of the resource demand of the task and the
running time of the task.

Metrics: The most important metric is the average job
response time. We also measured slowdown, which is defined
as the job response time divided by the time it takes to finish
when the job is scheduled to the cluster alone. The slow-
down is widely used to evaluate the fairness of scheduling
algorithms. Even though our main target is not improving
the performance regarding makespan, we also evaluated the
makespans in the results.

We also use the notion of the Normalized Average Job
Response Time, defined as follows:

Normalized Resp. Time =
Result of Fair Scheduling

Result of Our Algorithm

TABLE 1
The workload used in the experiments in the private testbed.

Bin Job Name Dataset Size # of
maps

of
reduces

of
jobs

1 TeraGen 1 GB 100 10 3
1 SelfJoin 1 GB 102 10 15
2 Classification 10 GB 102 20 17
2 HistogramMovies 10 GB 102 20 12
2 HistogramRatings 10 GB 102 20 8
3 SequenceCount 30 GB 234 60 16
3 InvertedIndex 30 GB 234 60 19
4 WordCount 100 GB 721 80 10

TABLE 2
The workload used in the experiments in Amazon EC2.

Bin Job Name Dataset Size # of
maps

of
reduces

of
jobs

1 TeraGen 1 GB 100 10 3
1 SelfJoin 1 GB 102 10 4
2 Classification 10 GB 102 20 4
2 HistogramMovies 10 GB 102 20 3
2 HistogramRatings 10 GB 102 20 4
3 SequenceCount 30 GB 234 60 3
3 InvertedIndex 30 GB 234 60 3
4 WordCount 50 GB 396 80 6

9

0 2000 4000 6000 8000 10000 12000 14000

Job Response Time (s)

0

0.2

0.4

0.6

0.8

1
C

D
F

LAS_MQ

LAS

FAIR

FIFO

(a) The CDF of job response times

Bin 1 Bin 2 Bin 3 Bin 4 ALL

Job Types

0

2000

4000

6000

8000

10000

12000

A
v
er

ag
e

Jo
b
 R

es
p
o
n
se

 T
im

e
(s

) LAS_MQ

LAS

FAIR

FIFO

(b) The average job response time in different
bins.

0 50 100 150 200

Slowdown

0

0.2

0.4

0.6

0.8

1

C
D

F

LAS_MQ

LAS

FAIR

FIFO

(c) The slowdown of all the jobs.

Fig. 5. The performance of the workload with the mean arrival interval of 80 seconds.

0 2000 4000 6000 8000 10000

Job Response Time (s)

0

0.2

0.4

0.6

0.8

1

C
D

F

LAS_MQ

LAS

FAIR

FIFO

(a) The CDF of job response times

Bin 1 Bin 2 Bin 3 Bin 4 ALL

Job Types

0

1000

2000

3000

4000

5000

6000

7000

8000
A

v
er

ag
e

Jo
b
 R

es
p
o
n
se

 T
im

e
(s

) LAS_MQ

LAS

FAIR

FIFO

(b) The average job response time in different
bins.

0 20 40 60 80 100 120

Slowdown

0

0.2

0.4

0.6

0.8

1

C
D

F

LAS_MQ

LAS

FAIR

FIFO

(c) The slowdown of all the jobs.

Fig. 6. The performance of the workload with the mean arrival interval of 50 seconds.

5.2 Experimental Results in Private Testbed

We aim to answer the following questions in our experi-
ments. (1) What is the performance of our approach regard-
ing average job response times and fairness? (2) How does
the performance vary with different loads?

5.2.1 Average Job Response Times

In Fig. 5, the mean interval of job arrivals is set to be
80 seconds. The number of queues and step are 10. The
threshold of the first queue is 100. In Fig. 5(a), we can
see that our solution outperforms LAS, Fair scheduler and
FIFO scheduler for job response times. FIFO has the worst
performance among the four algorithms. The reason is that
small jobs can be severely delayed by large jobs in FIFO.
LAS and Fair scheduling have similar performance. For
these two schedulers, small jobs can also get their shares.
Thus small jobs finish rapidly, however, large jobs will be
delayed for fine-grained sharing. To better illustrate the
performance for jobs with different input sizes, we divide
the workload into four bins according to the sizes of inputs
and we can see the performance of different bins in Fig. 5(b).

In Fig. 5(b), we can see that our approach outperforms
LAS and the Fair scheduler in all cases, and FIFO except
Bin 4. In the average job response time of all the jobs, we
can reduce the average job response time of LAS and Fair
scheduler by nearly 40%, and the average job response time
of FIFO by 46%. There are several highlights in our results.
First, our solution can effectively find out and give higher

priorities to small jobs, which can be seen in Bin 1-3. Second,
a small portion of jobs in FIFO has better performance than
ours as shown in Fig. 5(a), because of large jobs as we can
see in Bin 4. This is because for large jobs in FIFO, it would
be executed once the jobs before it are finished. However, in
our case, we would give priorities to newly arrived smaller
jobs instead and run large jobs in the final stage of the
workload. Thus in our scheduling policy, large jobs would
free up the resources for smaller jobs and wait longer to
obtain the resources. Third, FIFO has similar average job
response times in all the bins, which is because no matter
the job is large or not, it would wait for the completion of 29
jobs before it when the maximum number of running jobs
is 30 in the job admission module. Finally, LAS and Fair
scheduler have nearly the same performance. They have
good performance for small jobs while suffering from fine-
grained sharing for large jobs.

5.2.2 Fairness
Even though fairness is not the main goal of our design, we
also show the results as fairness is a very important metric
for job scheduling. We show our results of the slowdown
in Fig. 5(c), and we can see that again our solution has
the smallest slowdowns followed by LAS, Fair scheduler
and FIFO. The poor performance of FIFO is because of
the seriously delayed small jobs. While for LAS and Fair
scheduling, the bottlenecks are in large jobs as also indicated
in Fig. 5(a) and Fig. 5(b). Instead, our solution achieves
a good balance between small jobs and large jobs, thanks

10

to our design using a multilevel queue and weighted fair
sharing among queues.

5.2.3 Performance with Different Loads

The load is also an important factor for the performance
of scheduling. Thus we change the mean arrival interval of
the workload from 80 seconds in Fig. 5 to 50 seconds in
Fig. 6. In this figure, we can see that the performance is
better than the case of 80 seconds. More specifically, in all
three figures, the performance gaps between our approach
and baselines are larger. In Fig. 6(a), for our solution, around
90% of jobs have the average job response time of less than
2000 seconds while the corresponding values for LAS and
the Fair scheduler are only around 70%. In Fig. 6(b), we
reduce the average job completion time of LAS and Fair
scheduling by around 45% and the one of FIFO by 65%.
In Fig. 6(c), the slowdowns of our algorithm are also much
smaller. All the figures show that our approach works even
better for higher system loads. The explanation is that if
the load is higher, there would be more running jobs in the
system, which makes job scheduling more important.

LAS_MQ LAS FAIR FIFO

Algorithms

0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

al
iz

ed
 M

ak
es

p
an

 o
v
er

 L
A

S
_
M

Q

(a) Mean arrival interval of 80s

LAS_MQ LAS FAIR FIFO

Algorithms

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o
rm

al
iz

ed
 M

ak
es

p
an

 o
v
er

 L
A

S
_
M

Q

(b) Mean arrival interval of 50s

Fig. 7. The makespan of algorithms for different arrival intervals.

5.2.4 Makespan
Even though reducing the makespan is not the main ob-
jective of our system, we also measure the performance of
our system regarding makespan. The results are normalized
over the makespan of LAS_MQ. In Fig. 7(a), we draw the
results of makespan when the mean arrival of the interval is
80 seconds. We can see that the makespans of the other three
algorithms are similar and are around 1.2 times to the result
of LAS_MQ. For LAS, when there are free resources left after
the job with the least attained service is scheduled, the free
resources are shared among all the other jobs. In this case,
the sharing process might not be efficient enough as it may
assign more resources to some jobs than they need, which
can lead to low utilization of resources. Similar situations
also happen to FAIR and FIFO. For FAIR, which directly
shares all the resources to jobs according to priorities only,
can also result in low utilizations of resources and larger
makespans. FIFO will assign all the resources to the job that
arrives the first and will incur the same results.

We also depict the results when the mean arrival of the
interval is 50 seconds in Fig. 7(b). In the figure, we can see
that LAS_MQ still performs the best and the makespans
of the other three algorithms are more than 1.2 times to
the one of our algorithm. In this figure, the performance
of FIFO is the worst. The reasons are as follows. First FIFO
cannot fully utilize the resources in the cluster for many jobs.
Second, LAS_MQ, LAS and FAIR have better performance
in this case than the case with the mean arrival interval of
80 seconds, which can be also seen in Fig. 5 and Fig. 6.

5.3 Experimental Results in Amazon EC2
As there are only four large workstations in the testbed
experiments, we further examine the performance of our
algorithm with 16 m4.xlarge instances in Amazon EC2. We
not only increase the number of nodes in the experiments
but also compare our algorithm with two more algorithms,
which are EQU and IDEAL. EQU is the algorithm that
shares the resources equally to all the pending jobs, which
is different from FAIR because FAIR shares the resource
according to the priorities of jobs. The algorithm named
IDEAL is the algorithm that has complete information about
job sizes and adopts shortest remaining job first strategy.
This algorithm can let us know the gap between our algo-
rithm and the optimal solution with ideal information about
job sizes. Here we also compare the performances regarding
average job completion times, slowdowns and makespans.

5.3.1 Average Job Response Times
We show the CDF of the job response times in Fig. 8(a).
In this figure, we can see that our algorithm is better than
all the other algorithms except IDEAL. Again, the reason is
that our algorithm can effectively separate large jobs from
small jobs and schedule the large jobs one by one. LAS, FAIR
and EQU both have similar performances. We can also see
that around 20% of the jobs have better performance than
LAS_MQ and IDEAL. To better understand the results, we
also show the average job response times of jobs in different
bins.

In Fig. 8(b), we can see that the reason is that FIFO has
better performance for large jobs. The reason is the same

11

0 500 1000 1500 2000 2500 3000 3500

Job Response Time (s)

0

0.2

0.4

0.6

0.8

1
C

D
F

LAS_MQ

LAS

FAIR

FIFO

EQU

IDEAL

(a) The CDF of job response times

Bin 1 Bin 2 Bin 3 Bin 4 ALL

Job Types

0

500

1000

1500

2000

2500

A
v

er
ag

e
Jo

b
 R

es
p

o
n

se
 T

im
e

(s
)

LAS_MQ

LAS

FAIR

FIFO

EQU

IDEAL

(b) The average job response time in different bins.

0 20 40 60 80

Slowdown

0

0.2

0.4

0.6

0.8

1

C
D

F

LAS_MQ

LAS

FAIR

FIFO

EQU

IDEAL

(c) The slowdown of all the jobs.

Fig. 8. The performance of the workload with the mean arrival interval of 80 seconds in Amazon EC2.

LAS_MQ LAS FAIR FIFO EQU IDEAL

Algorithms

0

0.2

0.4

0.6

0.8

1

1.2

N
o
rm

al
iz

ed
 M

ak
es

p
an

 o
v
er

 L
A

S
_
M

Q

Fig. 9. The makespan of algorithms.

as we discussed before, which is FIFO will schedule the
large jobs when they are available. However, both LAS_MQ
and IDEAL would schedule smaller jobs first and delay
those large jobs intentionally to minimize the average job
completion time. Thus LAS_MQ and IDEAL have lower
average job completion times for all the jobs. In the figure,
by looking at the results of LAS_MQ and IDEAL, we can
see that our algorithm has comparable performance with
IDEAL in Bin 1 and Bin 4, which means our algorithm
can actually identify large and small jobs. However, our
multi-level queue structure has some extra overhead for
other jobs to find their belonging position, which results in
performance degradations in Bin 2 and Bin 3. Last but not
the least, EQU has almost the same performance with the
FAIR scheduler.

5.3.2 Fairness

We also show the results of slowdowns in Fig. 8(c). Again,
IDEAL has the best performance, followed by our algorithm
without knowing the information about job sizes. The result
is aligned with the results in Fig. 5(c) and Fig. 6(c). In all the
cases, FIFO has the worst performance because of the large
response times of small jobs.

5.3.3 Makespan

We also depict the results regarding makespan in Fig. 9.
In the figure, we can see that FIFO performs the worst
and the other five algorithms including IDEAL have similar
performances. FIFO has the worst performance because it
always allocates 100% of the resources to the first available
job, which results in low utilization of resources. It is also in-
teresting to see that our algorithm LAS_MQ does not show
improvements over LAS and FAIR as shown in Fig. 7(a) and
Fig. 7(b). After careful analysis, we find out the main reason
is that total amount of resource is two times less than the
ones in the case of the private testbed. Thus LAS and FAIR
will have higher resource utilizations and thus have better
makespans compared with the case in the private testbed.

5.4 Simulation Results

With our simulations, we would like to investigate the
performance of our scheduler with different distributions
and the sensitivity of our approach to different parameter
settings.

5.4.1 Workloads following Different Distributions

We compare the performance of algorithms for workloads
under both heavy-tailed and light-tailed distributions. In
these two cases, for LAS_MQ, the number of queues and
steps are 10. The threshold of the first queue is 1. The results
are shown in Fig. 10. In Fig. 10(a), we can see that, for
the heavy-tailed distribution, the performance of LAS is the
best, followed by LAS_MQ and Fair scheduling. LAS_MQ
performs slightly worse than LAS, but it still outperforms
Fair scheduling and reduces the average job completion
time by around 30%. FIFO is much worse than the other
three algorithms because small jobs can be severely delayed
by large jobs. The reason for the good performance of our
approach is that we can effectively separate large jobs from
small jobs with the multilevel queue, thus we can obtain
similar performance with LAS.

In the case of uniform distribution, FIFO and LAS_MQ
have the best performance, and the average job response
time is only half the ones of Fair scheduling and LAS.
Because in this case, Fair scheduling and LAS would both
be downgraded to processor sharing. The good performance
of LAS_MQ is because that jobs with similar sizes will

12

LAS_MQ LAS FAIR FIFO

Algorithms

10
1

10
2

10
3

10
4

A
v

er
ag

e
Jo

b
 R

es
p

o
n

se
 T

im
e

(s
)

 19.4 17.4
 27.7

1933.9

(a) Heavy-tailed distribution

LAS_MQ LAS FAIR FIFO

Algorithms

0

2

4

6

8

10

A
v

er
ag

e
Jo

b
 R

es
p

o
n

se
 T

im
e

(s
) ×10

7

5.0e+07

1.0e+08 1.0e+08

5.0e+07

(b) Uniform distribution

Fig. 10. The average job response time of algorithms over different
distributions.

eventually go to the same queue, and we schedule these
jobs one by one to avoid fine-grained sharing.

To summarize, we can see that LAS_MQ can provide
stable and good performance for different workloads. In
other words, our approach is quite adaptive, which is of
particular importance in the case of cloud computing where
the workloads in the future are dynamic and difficult to
predict.

5.4.2 Different Number of Queues and Thresholds

We show the performance of our scheduler with different
numbers of queues and different thresholds of the first
queue in Fig. 11. In this figure, we can see that our scheduler
with more queues can achieve better performance, and our
scheduler outperforms the Fair scheduler if the number of
queues is five or higher. In fact, it already obtains the best
result when the number of queues is five because there
are no jobs with sizes larger than the threshold of the fifth
queue. With more queues, we can separate large jobs from
small ones more effectively. In our system, adding more
queues only has limited overhead because the movements

1 2 4 5 10

Number of Queues

0

0.5

1

1.5

N
o

rm
al

iz
ed

 A
v

er
ag

e
Jo

b
 R

es
p

o
n

se
 T

im
e

(a) The threshold of the first queue is 1 and step is 10.

0.001 0.01 0.1 1 10

The Threshold of the First Queue

0

0.5

1

1.5

N
o

rm
al

iz
ed

 A
v

er
ag

e
Jo

b
 R

es
p

o
n

se
 T

im
e

(b) The mumber of queues and step are 10.

Fig. 11. The performance of our algorithm with different parameters.
Improvements are over Fair Scheduling. (a) The number of queues. (b)
The threshold of the first queue.

of jobs only happen at the software level. In Fig. 11(b), we
investigate the performance with different thresholds of the
first queue. We can see that the performance is good for a
variety of values. When the threshold is set to be 10, the
performance is going down because the mean normalized
size of jobs in the trace is around 20, which makes most
of the jobs stay in the first queue until they complete.
Therefore, it does not effectively separate large jobs from
smaller ones in this case, which is the main reason for the
deterioration of its performance. We can avoid this problem
by using a relatively small number as the threshold for the
first queue.

6 RELATED WORK

Scheduling without prior information. Multilevel feedback
queue (MLFQ) [25] was a scheduling algorithm that prefers
small jobs and I/O bound processes. It also does not require

13

prior information about job sizes. Bai et al. [14], [26] imple-
mented a MLFQ in commodity switches for flow scheduling
in data center networks. Least attained service (LAS) [13]
was also popular for job scheduling without prior informa-
tion, yet it may suffer from performance degradations when
several large jobs arrive. To resolve this issue, Discrete-
LAS (DLAS) was introduced in [15] for coflow scheduling.
Theoretical analysis on the thresholds of the queues for
multilevel queue based coflow scheduling was proposed
in [27].

While they focused on similar problems, our approach in
this paper differs significantly in the following ways. First,
our approach focuses on job scheduling for big data pro-
cessing systems, which is different from scheduling flows in
switches. In our case, resources are organized into contain-
ers and tasks have dependencies. Second, we utilize more
information available, such as stage progresses, and propose
a practical way to calculate the amount of service that the
job would receive in each stage, which can separate the
large jobs from small jobs more quickly. Third, we propose
to schedule the jobs in each queue based on the amount of
resources required by the remaining tasks of jobs, which can
also significantly improve the performance.

General job scheduling. For non-network aware ap-
proaches, Hopper [28] took speculation into consideration
and aimed to combine speculative mechanisms with job
scheduling to improve the performance. Hung et al. pro-
posed solutions for job scheduling in geo-distributed big
data processing [29]. While the work mentioned above did
not consider job utilities, Huang et al. [30] proposed to
achieve max-min fairness across different jobs. For network-
aware approaches, in [6], Jalaparti et al. proposed to coor-
dinate data and task placements to improve the network
locality and the overall performance. Grandl et al. took more
types of resources, such as CPU, memory, and network,
into consideration in its job scheduling policy, and aimed to
improve the performance of job completion time, makespan
and fairness at the same time [5]. Tan et al. proposed to
improve the job response times by coupling the progresses
of map tasks and reduce tasks [31] in Hadoop jobs.

Even though we both focus on job scheduling, the solu-
tions that assume known information on job sizes may be
infeasible for the cases that we mentioned before.

Resource allocation and planing. YARN [18] and Mesos [19]
are both open-source resource managers for scheduling
jobs from different data processing frameworks in a shared
cluster. In YARN, it is the application’s responsibility to
request resources with specifications from the cluster. While
in Mesos, the cluster would offer available resources to the
applications first. These applications then decide whether
to accept the resource offers. However, the flexibility and
parallelism of Mesos are limited by conservative resource
visibility. To resolve these issues, Omega [32] proposed a
shared state and optimistic concurrency control approach.
Matrix [33] proposed automatic VM configurations and
recommendations to achieve predictable performance of
workloads by applying machine learning algorithms.

Rayon [34] proposes an efficient heuristic to reserve the
resource demands for deadline aware jobs while minimizing
the latencies for small jobs. While Morpheus [35] starts from
deriving the Service Level Objectives (SLOs) and presents

a low-cost based resource allocation scheme. Instead of
placing the pending jobs one by one, TetriSched [36] can
make global decisions for all the pending jobs.

7 DISCUSSIONS AND INSIGHTS

There exist several limitations in our proposed approach,
which may lead to potential future directions of research.

First, a theoretical analysis regarding the number of
queues and the thresholds of queues has not been included
in this paper. As we previously mentioned, adopting a
new ordering approach and weighted fair sharing would
increase the complexity of theoretical analysis substantially.
Thus, we have chosen to adopt a simple but practical strat-
egy to determine the number of queues and the thresholds
of queues, and the effectiveness of such a strategy is vali-
dated through our extensive experiments and simulations.
As future work, it would be interesting to conduct a more
detailed theoretical analysis to set the parameters and make
the scheduler more adaptive to different workloads.

Second, we may take fairness as another major objective
for the scheduler in the future work. In the current practice,
using weighted fairness sharing can achieve better fairness
than baselines even though fairness is not explicitly opti-
mized in our algorithm. However, it will be interesting to
investigate the trade-off between fairness and job response
times. We plan to design a tunable parameter to make the
trade-off and flexibly adjust the performance as needed.

Third, how to design the scheduling algorithm in
cases with low and diverse network bandwidths like geo-
distributed big data processing is another interesting po-
tential direction. In these cases, the network transfer times
could be comparable or even larger than the CPU times of
the jobs. Thus we may need to figure out how to coupling
both VMs and network resources in the scheduling process
to increase the resource efficiency apart from reducing job
response times.

8 CONCLUDING REMARKS

In this paper, we first show that there are plenty of cases
that complete information on job sizes is not available in
big data processing systems. To address this challenge, we
have designed and implemented a new job scheduler, called
LAS_MQ, to utilize a multilevel priority queue to mimic a
shortest job first policy without complete prior information
of jobs. We have also proposed a new way to obtain the
amount of service that the job would receive in each stage,
as well as a new policy for job scheduling in each queue
to further improve the performance. Both our experimental
and trace-driven simulation results have strongly confirmed
the effectiveness of our scheduler.

REFERENCES

[1] Z. Hu, B. Li, Z. Qin, and R. S. M. Goh, “Job scheduling without
prior information in big data processing systems,” in Proc. of IEEE
ICDCS, 2017, pp. 572–582.

[2] “Hadoop.” [Online]. Available: https://hadoop.apache.org/
[3] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,

M. J. Franklin, S. Shenker, and I. Stoica, “Resilient Distributed
Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing,” in Proc. of USENIX NSDI, 2012.

14

[4] “Fair scheduler.” [Online]. Available: https://goo.gl/xjb3Yp
[5] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and

A. Akella, “Multi-resource Packing for Cluster Schedulers,” in
Proc. of ACM SIGCOMM, 2014, pp. 455–466.

[6] V. Jalaparti, P. Bodik, I. Menache, S. Rao, K. Makarychev, and
M. Caesar, “Network-aware Scheduling for Data-parallel Jobs:
Plan When You Can,” in Proc. of ACM SIGCOMM, 2015, pp. 407–
420.

[7] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M. Vojnovic, and
S. Rao, “Efficient Queue Management for Cluster Scheduling,” in
Proc. of ACM Eurosys, 2016.

[8] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and G. Vargh-
ese, “WANalytics: Analytics for a Geo-distributed Data-intensive
World,” in Proc. of CIDR, 2015.

[9] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella,
V. Bahl, and I. Stoica, “Low Latency Geo-distributed Data Ana-
lytics,” in Proc. of ACM SIGCOMM, 2015.

[10] Z. Hu, B. Li, and J. Luo, “Flutter: Scheduling Tasks Closer to Data
across Geo-distributed Datacenters,” in Proc. of IEEE INFOCOM,
2016.

[11] ——, “Time-and Cost-Efficient Task Scheduling across Geo-
Distributed Data Centers,” IEEE Trans. Parallel Distrib. Syst.,
vol. 29, no. 3, pp. 705–718, 2018.

[12] H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang, H. Guan, and
M. Zhang, “Guaranteeing Deadlines for Inter-datacenter Trans-
fers,” in Proc. of ACM Eurosys, 2015.

[13] I. A. Rai, G. Urvoy-Keller, and E. W. Biersack, “Analysis of LAS
Scheduling for Job Size Distributions with High Variance,” ACM
SIGMETRICS Performance Evaluation Review, vol. 31, no. 1, pp. 218–
228, 2003.

[14] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang,
“Information-agnostic Flow Scheduling for Commodity Data Cen-
ters,” in Proc. of USENIX NSDI, 2015, pp. 455–468.

[15] M. Chowdhury and I. Stoica, “Efficient Coflow Scheduling With-
out Prior Knowledge,” in Proc. of ACM SIGCOMM, 2015, pp. 393–
406.

[16] S. Agarwal, S. Kandula, N. Bruno, M.-C. Wu, I. Stoica, and J. Zhou,
“Reoptimizing Data Parallel Computing,” in Proc. of USENIX
NSDI, 2012, pp. 281–294.

[17] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia, “A Study of Skew
in Mapreduce Applications,” Open Cirrus Summit, 2011.

[18] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache
Hadoop Yarn: Yet Another Resource Negotiator,” in Proc. of ACM
SoCC, 2013.

[19] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A Platform for Fine-
Grained Resource Sharing in the Data Center.” in Proc. of USENIX
NSDI, 2011.

[20] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica,
“Improving MapReduce Performance in Heterogeneous Environ-
ments.” in Proc. of USENIX OSDI, 2008.

[21] M. Dell’Amico, D. Carra, M. Pastorelli, and P. Michiardi, “Revis-
iting Size-based Scheduling with Estimated Job Sizes,” in IEEE
International Symposium on Modelling, Analysis & Simulation of
Computer and Telecommunication Systems, 2014, pp. 411–420.

[22] “Capacity scheduler.” [Online]. Available: https://goo.gl/c9GS2p
[23] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar, “Puma:

Purdue Mapreduce Benchmarks Suite,” 2012.
[24] Y. Chen, S. Alspaugh, and R. Katz, “Interactive Analytical Process-

ing in Big Data Systems: A Cross-industry Study of Mapreduce
Workloads,” PVLDB, vol. 5, no. 12, pp. 1802–1813, 2012.

[25] F. J. Corbató, M. Merwin-Daggett, and R. C. Daley, “An Ex-
perimental Time-sharing System,” in Proc. of ACM Spring Joint
Computer Conference, 1962, pp. 335–344.

[26] L. Chen, K. Chen, W. Bai, and M. Alizadeh, “Scheduling Mix-
flows in Commodity Datacenters with Karuna,” in Proc. of ACM
SIGCOMM, 2016, pp. 174–187.

[27] Y. Gao, H. Yu, S. Luo, and S. Yu, “Information-Agnostic Coflow
Scheduling with Optimal Demotion Thresholds,” in Proc. of IEEE
ICC, 2016, pp. 1–6.

[28] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu, “Hopper:
Decentralized Speculation-aware Cluster Scheduling at Scale,” in
Proc. of ACM SIGCOMM, 2015.

[29] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling Jobs Across
Geo-distributed Datacenters,” in Proc. of ACM SoCC, 2015, pp. 111–
124.

[30] Z. Huang, B. Balasubramanian, M. Wang, T. Lan, M. Chiang, and
D. H. Tsang, “Need for Speed: Cora Scheduler for Optimizing
Completion-Times in the Cloud,” in Proc. of IEEE INFOCOM, 2015,
pp. 891–899.

[31] J. Tan, X. Meng, and L. Zhang, “Coupling Task Progress for Mapre-
duce Resource-aware Scheduling,” in Proc. of IEEE INFOCOM,
2013, pp. 1618–1626.

[32] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, Scalable Schedulers for Large Compute Clus-
ters,” in Proc. of ACM Eurosys, 2013, pp. 351–364.

[33] R. C.-L. Chiang, J. Hwang, H. H. Huang, and T. Wood, “Ma-
trix: Achieving Predictable Virtual Machine Performance in the
Clouds.” in Proc. of USENIX ICAC, 2014, pp. 45–56.

[34] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakr-
ishnan, and S. Rao, “Reservation-based Scheduling: If You’re Late
Don’t Blame Us!” in Proc. of the ACM SoCC, 2014, pp. 1–14.

[35] S. A. Jyothi, C. Curino, I. Menache, S. M. Narayanamurthy, A. Tu-
manov, J. Yaniv, Í. Goiri, S. Krishnan, J. Kulkarni, and S. Rao,
“Morpheus: Towards Automated SLOs for Enterprise Clusters,”
in Proc. of USENIX OSDI, 2016.

[36] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-
Balter, and G. R. Ganger, “TetriSched: Global Rescheduling with
Adaptive Plan-ahead in Dynamic Heterogeneous Clusters,” in
Proc. of ACM Eurosys, 2016.

Zhiming Hu received his BS degree in com-
puter science from Zhejiang University, China,
in 2011 and his Ph.D. degree from the School
of Computer Science and Engineering, Nanyang
Technological University, Singapore, in 2016. He
is now a postdoctoral fellow in the Department of
Electrical and Computer Engineering, University
of Toronto, Canada. His research interests in-
clude big data processing, data center network-
ing, and cloud computing.

Baochun Li received his B.Engr. degree from
the Department of Computer Science and Tech-
nology, Tsinghua University, China, in 1995 and
his M.S. and Ph.D. degrees from the Department
of Computer Science, University of Illinois at
Urbana-Champaign, Urbana, in 1997 and 2000.
Since 2000, he has been with the Department
of Electrical and Computer Engineering at the
University of Toronto, where he is currently a
Professor. He holds the Bell Canada Endowed
Chair in Computer Engineering since August

2005. His research interests include cloud computing, multimedia sys-
tems, applications of network coding, and wireless networks. He was
the recipient of the IEEE Communications Society Leonard G. Abraham
Award in the Field of Communications Systems in 2000, the Multimedia
Communications Best Paper Award from the IEEE Communications
Society in 2009, and the University of Toronto McLean Award in 2009.
He is a member of ACM and a Fellow of IEEE.

15

Zheng Qin is a Senior Scientist and leads
the Distributed Computing Capability Group at
the Institute of High Performance Computing
(IHPC), Agency for Science, Technology and
Research (A*STAR). He graduated with BEng
in Information Engineering from Xi’an JiaoTong
University in 2001 and PhD in Electrical and
Computer Engineering from National University
of Singapore in 2006. He has been with IHPC
Since November 2007. His research interest in-
cludes scheduling for distributed systems, large-

scale spatial-temporal data processing, and data-driven urban simula-
tion.

Rick Siow Mong Goh is the Director of the
Computing Science (CS) Department at the
A*STAR’s Institute of High Performance Com-
puting (IHPC). At IHPC, he leads a team of
more than 60 scientists in performing world-
leading scientific research, developing technol-
ogy to commercialization, and engaging and col-
laborating with industry. The research focus ar-
eas include high performance computing (HPC),
distributed computing, artificial intelligence, and
complex systems. His expertise is in discrete

event simulation, parallel and distributed computing, and performance
optimization and tuning of applications on large-scale computing plat-
forms. Dr. Goh received his Ph.D. in Electrical and Computer Engineer-
ing from the National University of Singapore. More details on Rick can
be found at: http://www.a-star.edu.sg/ihpc/People/tid/2/Rick-Goh-Siow-
Mong.aspx.

