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Abstract
Advances in deep learning have shown promising potential
in scalable video analytics in the cloud. However, in con-
strained settings, it is not feasible to send every video frame
from cameras at the edge. Being selective about which frames
should be sent to the cloud reduces bandwidth consumption,
conserves energy, and protects user privacy.

Existing solutions to edge-based filtering primarily focus
on object detection and train binary classifiers to suppress
transmission of irrelevant frames. This is both hard to scale
when the queries of interest can change rapidly and infea-
sible for complex queries specified with natural language.
In this paper, we propose mmFilter, a multimodal approach
for filtering video streams matching predefined events (de-
fined via natural language queries) at the edge. mmFilter
learns compact representations for video and text data and
automatically matches semantically similar pairs in a joint
embedding space. Our model generalizes to various unseen
queries, allowing new, complex queries to be added to the
system in real timewithout retraining.We have implemented
and evaluated our system on popular video datasets such as
ActivityNet Captions and MSRVTT. mmFilter has shown a
1.5× improvement in event detection accuracy comparing
with the state-of-the-art filtering approach.
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1 Introduction
Video camera deployments on edge devices are becoming
increasingly prevalent. It is estimated that the market size of
home security cameras will triple in the next seven years [3].
With millions of frames generated per camera each day, effi-
cient video analytics are important for various applications.
For example, live video feeds from home security cameras
need to be processed in near real-time to automatically iden-
tify intruders or abnormal events and immediately alert the
user. Home robots need to constantly survey the environ-
ment and instantly notify the user of any problems, such as a
cat scratching the sofa or a burglar breaking in. Augmented
reality (AR) glasses could warn vision-impaired wearers of
nearby dangers. All these applications require the system to
understand the relationship between the incoming frames
and events of interest to the user or application.

However, uploading all the video content to the cloud for
accurate detection of such events would not be viable be-
cause most edge devices are bandwidth-limited and energy-
constrained. mmFilter serves to filter out uninformative
video segments and pass only relevant frames to the cloud.
Existing approaches such as NoScope [11] and FilterFor-
ward [5] train binary classifiers to suppress frames unre-
lated to a desired object class. However, both works are
constrained to detecting object-based queries and require an-
notated training data for each object, making it impractical
to dynamically support new queries.

In this paper, we propose a lightweight multimodal frame-
work, mmFilter, to analyze the incoming frames and match
them to predefined user queries. Specifically, we encode a
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Figure 1. System design of mmFilter.

set of queries expressed by natural language and a window
of incoming frames into fixed-sized embeddings, and use a
trained multimodal model to map them into a joint embed-
ding space. We can then compute cosine similarities between
the video-text embeddings to determine the relevant frames
to a query. mmFilter is able to generalize to unseen queries
as similar queries would be in close proximity with one
another in the shared embedding space. For purposes of il-
lustration, suppose the feature extractors in mmFilter have
been trained with instances of a cat and a couch, while the
user expresses the query "[notify me if] my kitten scratches
the sofa". Through consideration of semantic similarity be-
tween words (i.e. cat and kitten), a multimodal video-text
matching approach can generalize much better to such an
unseen query than an object-detection-based approach.

The main contributions of this paper are three-fold. First,
we propose a lightweight architecture to detect and filter
incoming frames based on user-specified events (in natural
language) in camera-based streaming applications. More-
over, we demonstrate it is feasible to deploy the system on
resource-constrained devices to analyze live video streams.
Second, our system represents both the text and video data as
compact embeddings, which allows highly complex queries
to be used. We train the system only once to automatically
generalize to new queries, whereas in existing edge-filtering
solutions, a new classifier needs to be trained for each differ-
ent query. Finally, we propose an efficient mapping algorithm
to find the closest video and text embedding pair, which
speeds up the conventional cosine similarity computation
by 50% in some cases.

2 System Design
In this section, we introduce the system design of mmFilter,
a novel approach for efficiently filtering camera-based video
streams given a list of complex natural language user queries.

2.1 System Overview
An overview of the mmFilter architecture is described in
Fig. 1. Video cameras stream their frames to the mmFilter
proxy on the edge via a local area network (LAN) link. The

mmFilter middleware internally comprises of four main com-
ponents: a) encoding the inputs into high-dimensional fea-
ture vectors (also known as embeddings), b) aggregating the
embeddings, c) mapping the features to a common embed-
ding space, and d) performing efficient video-to-querymatch-
ing. Given a live video input and a set of user-defined queries,
mmFilter will output a set of scores relating each window of
frames and query. One key difference to consider between
the two inputs is that the frame features are extracted in
real time while the queries are processed offline, as opposed
to existing work on multimodal video retrieval [16, 19] in
which both features are computed offline.

We train a model on large-scale video datasets offline to
learn the joint embeddings for video and text such that once
the features are projected into a joint space, frame and query
embeddings that are semantically and contextually similar
will be closer to one another. The distances between the em-
beddings can be computed using the cosine of the angle be-
tween them. If the similarity score meets an event detection
threshold, the window of frames associated with the embed-
dings will be transmitted to the cloud for further processing
(i.e., running a larger model for more accurate results). Note,
we set the threshold for similarity scores empirically in our
paper. How to dynamically tune the threshold for different
videos will be explored in our future work. The objective of
the system is to identify all the query-relevant frames on the
edge node to upload, thereby reducing bandwidth used on
the wide area link (WAN).

2.2 Video and Text Encoder
We consider two designs to process the live video feed. A sim-
ple approach would be to process each frame separately [5].
The features for each frame would be acquired and projected
into the joint embedding space to compare with the query
embeddings. Based on the similarity scores, or the embed-
ding distances, we can detect precisely the frames that relate
to the queries. To further reduce the noise, the result can be
smoothed by adopting a k-voting algorithm over N consec-
utive frames. If the majority of the frames match a certain
trigger, the entire window will be uploaded to the cloud.
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Alternatively, we could compare the video frames with the
queries using a per-window basis. Rather than computing a
score of each frame with each event trigger, the features for a
window of N consecutive frames are temporally aggregated
using average pooling to produce a fixed length feature vec-
tor. As before, the feature vector will be projected into the
joint space and compared with the queries. The cosine of the
angle between the embeddings will decide whether to drop
the entire window or send it to the cloud.

We investigate the effect of varying window sizes in frame-
based and window-based approaches using event F1 [5] as a
metric. Here, as both recall and precision are important for
event detection, event F1 is used to balance the two metrics.
As shown in Fig. 2, the latter method outperforms the former
in all window sizes. Intuitively, this is because the aggrega-
tion module allows temporal correlations to be exploited. For
example, consider a video frame of a hand covering a wa-
ter bottle cap. An image alone raises ambiguity on whether
the bottle is being tightened or loosened. Window-based ap-
proach also avoids redundant comparisons since individual
scores do not need to be computed for consecutive frames
of nearly identical features.
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Figure 2. Window-based approach and frame-based ap-
proach on MSRVTT dataset (the higher the better).

For each query, we use a pretrained BERT model [7] to
obtain the word embeddings for eachword. Theword vectors
are then aggregated into a fixed-size feature vector using
NetVLAD [4], whose weights are learned during training.

2.3 Gated Encoding Unit
Upon aggregating the video and text features into a single
fixed-length vector, the output will be passed into a gated
embedding unit (GEU). This unit maps the features into the
joint embedding space and selects which raw features to be
highlighted or suppressed.

The three-step process is shown in the following equations.
Here W1 ∈ Rd2xd1 , W2 ∈ Rd2xd2 , b1 ∈ Rd2 and b2 ∈ Rd2

are learnable parameters given the dimension of the input
features to bed1 and dimension of the output to bed2. σ is the

element-wise sigmoid activation and ◦ is the element-wise
multiplication.

E1 =W1E0 + b1 (1)
E2 = E1 ◦ σ (W2E1 + b2) (2)

E =
E2
∥E2∥ 2

(3)

Eq.(1) projects the features into the joint embedding space
with a linear layer. The output is passed into a non-linear
context gating layer [18, 19] shown in Eq.(2). Lastly, the result
is L2-normalized as shown in Eq.(3). The motivation behind
the gating function in Eq.(2) is two-fold. First, we wish to
introduce non-linearities in our model. Second, we wish to
reweight the strengths of the activations in E1 to highlight
and suppress information given the context of the video and
query. Consider the query "a dog is biting the curtains" and a
video clip of a dog doing so. Although the video frames may
contain other objects such as furniture or outdoor scenery,
the visual activations for these features are downweighted
given the context of the query, while the features for the dog
and the curtain are strengthened.

2.4 Approximate Nearest Neighbour Search
After the embeddings for a window of frames are mapped
into the joint space, the last step is to search for the query
with the highest cosine similarity score to the video segment.
The simplest approach would be to return the highest score
between the set of frames and every predefined trigger. How-
ever, this scales linearly with the number of queries and does
not leverage the fact that the text embeddings are computed
ahead of time.

Therefore, in mmFilter, we adopt the approximate nearest
neighbour search system HNSW [17] to speed up the process
of identifying the query with the highest cosine similarity
score. The key idea in HNSW [17] is to build a hierarchical
set of graphs (layers) with nested subsets of nodes in each
layer. The links are separated into different layers by their
distance scales. The algorithm has logarithmic time complex-
ity, which reduces the overall computation cost and offers
better scalability compared to the naive approach.

2.5 Loss Function
We train a lightweight model offline to jointly optimize the
parameters in the video encoder and query encoder. With
the normalized video and text embeddings obtained from
the GEU, the cosine similarity score s ji between the ith video
vi and jth query qj can be computed. Note, the ground truth
query of the ith video is the ith query. Therefore, sii denotes
the similarity score for the ith positive pair. We minimize a
bidirectional max-margin ranking loss [21] to jointly learn
the video-text representations:
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L =
1
N

N∑
i=1, j,i

max(0,m + s ji − sii ) +max(0,m + sij − sii ) ,

where N is the batch size andm is a tunable margin, which
is set to 0.25 in this paper. The objective is to ensure that the
similarity scores of positive pairs are larger than similarity
scores of negative pairs by at leastm.

3 Evaluation
This section evaluates the performance of mmFilter.

3.1 Experimental Setup
We use a lightweightMobileNetV2 [2] network pretrained on
ImageNet [6] to extract the visual features from the incoming
video frames. On the other hand, the embeddings for the
predefined queries are encoded offline by BERT Large [7].
We evaluate mmFilter on an edge server and an NVIDIA

Jetson Nano. The server has a 1080Ti GPU with 8GB of GPU
memory, and an i9-7900X CPU @ 3.30GHz with ten cores.

3.1.1 Datasets
We trained our models on two widely used video datasets,
ActivityNet Captions [13] and MSRVTT [23]. We followed
the ActivityNet training splits proposed by [13] but with
the validation set further divided in half to allocate samples
for the test set. While ActivityNet has mostly distinct cap-
tions for each video, MSRVTT [23] contains multiple video
clips associated with the same query. The abundance of data
related to a specific caption enables us to evaluate against
the existing filtering approach FilterForward [5], which de-
tects relevant frames by using a separate “microclassifier" for
each event. For our experiments, we specifically selected five
events from MSRVTT and trained a new binary classifier for
each query. We created 140 testing videos each comprising of
one positive clip and four randomly selected video segments
irrelevant to the queries.

3.1.2 Baselines
We evaluate mmFilter against two baselines.

FilterForward [5]. FilterForward [5] is the current state-
of-the-art approach for detecting event matching frames to
transmit to the cloud. For purposes of comparison, we at-
tempt to recreate their setup by trainingMobileNet classifiers
on the selected queries of MSRVTT to obtain a baseline.

mmFilter with other features. We compare mmFilter,
which uses a lightweight, expressive MobileNet feature ex-
tractor, with motion, scene, and RGB features from a heavier,
more complex model.

3.1.3 Metrics
The three metrics we explore in the paper are event F1 score,
bandwidth consumption and runtime efficiency. The event

F1 score proposed by [5] measures the accuracy of event
detection in a video. Recall is redefined to adapt to an event
i using the following parameters:

Existencei =

{
1 if detect any frame in event i
0 otherwise

Overlapi =
∑ |Intersect(Gi , Pi )|

|Gi |

EventRecalli = α × Existencei + β ×Overlapi

Gi and Pi are the ground truth frames and predicted frames
for eventi . We also use the same settings as in FilterForward
where α is 0.9 and β is 0.1. The parameters will highlight
the importance of not missing an event, which is a crucial
property for a filtering proxy.
For a given event, precision represents the fraction of

correctly detected frames out of all detected frames. Finally,
the event F1 score can be computed from the event-based
recall and precision.

3.2 Experimental Results
We discuss the performance of mmFilter compared with the
baseline approaches in terms of the event F1 score and band-
width consumption. Furthermore, we measure the runtime
of different components on an edge server and an NVIDIA
Jetson Nano. Lastly, we show that our system has a minimal
drop in accuracy with the addition of new queries.

3.2.1 Event Detection Accuracy
Fig. 3(a) compares the event detection accuracy of mmFilter
to the FilterForward design on the MSRVTT dataset. The av-
erage event F1 score for mmFilter is 0.72, significantly higher
than the baseline score of 0.29 in FilterForward. Adopting Fil-
terForward’s binary classifier approach, 89% of events have
an event F1 score of under 0.4 with no event scoring over 0.6.
Conversely, in mmFilter, over 70% of the events have higher
event F1 scores than 0.6.
The improvement in filtering ability is because mmFilter

encodes the video and text data into high dimensional vector
representations to learn semantically similar pairs in search
for the best match. On the other hand, the binary classifiers
could only output discrete labels to recognize simple objects,
which is problematic even in the case of simple queries such
as "a person is cooking".

3.2.2 Feature Extractor Selection
We assess the effectiveness of mmFilter by replacing the Mo-
bileNetV2 feature extractor with models from other modali-
ties. We explore three other encoders: motion features from a
34-layer R(2+1)Dmodel [22], scene features from aDenseNet-
161 model [1] pretrained on Places365 [24], and RGB features
from a more heavyweight SENet-154 model [10] pretrained
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Figure 3. The performance of mmFilter comparing with the baselines.

on ImageNet [6]. The window size and threshold are set to
be 48 and 0.2.
Fig. 3(b) shows the event F1 score on ActivityNet Cap-

tions for various encoders, with object features outperform-
ing other modalities by a significant margin. Notably, 49%
and 46% of events are missed by action and scene features,
whereas only 35% and 33% of events are not captured by
mmFilter and SENet-154. While a more powerful RGB model
SENet-154 shows a 0.016 improvement in average F1 score
compared to mmFilter, it takes 4.7 seconds to extract fea-
tures for a batch size of 48 frames on the edge server’s CPU.
This is more than 20x slower than MobileNetV2, making it
infeasible to deploy in live video settings.

3.2.3 Bandwidth Consumption
We compare the proportion of positive frames and nega-
tive frames sent to the cloud in mmFilter and FilterForward,
where a positive frame is one that is related to a user query.
Fig. 3(c) shows the result averaged over the 140 test videos
fromMSRVTT. For positive frames, mmFilter is able to detect
60% correctly while FilterForward successfully detects over
80%. However, the binary classifiers adopted in FilterForward
are unable to learn simple queries such as "a man is talking"
and mistakenly identify nearly all the frames as positive.
Hence, the false positive rate in FilterForward is 11× higher
than mmFilter. Overall, our approach reduces bandwidth
consumption by around 80% compared to FilterForward.

3.2.4 Approximate Nearest Neighbor Search
To further improve efficiency, we adopt an approximate near-
est neighbour search to return the most related query to a
window of frames. We compare the results with a conven-
tional cosine similarity approach. Evaluation is performed
by varying the number of predefined queries and comparing
the runtime between the two methods. The results shown
are averaged over 1,000 runs and processed on the CPU on
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Figure 4. Matching time for mmFilter on Jetson Nano.

a Jetson Nano. Note that both the visual and query embed-
dings are normalized after the gated embedding layer; hence,
cosine similarity simplifies to a matrix multiplication calcu-
lation between the two vectors. A linear search is performed
to obtain the match with the highest score.
As shown in Fig. 4, mmFilter reduces runtime costs by

50% and 25% for 10 and 1000 queries, respectively. mmFilter
creates a graph based on the distances of the query embed-
ding when they are first instantiated. Instead of conducting
a linear search between the video embedding and all the
queries, the time complexity is reduced to logarithmic.

3.2.5 Runtime Characteristics
Table 1 presents the runtime characteristics of different com-
ponents in our system. We consider two CPU platforms: the
edge server and Jetson Nano. On the edge server, the execu-
tion times are averaged over the ActivityNet Captions test
set and evaluated over a batch of 10 queries. The time spent
on video processing modules are for 48 frames, yielding a
throughput of as high as 220 frames per second (fps).
On the Jetson Nano, visual feature extraction for a batch

of 48 frames finished in 3.236 seconds, or around 15 fps. The
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Table 1. Runtime for the components inmmFilter (ms). GEU is short for Gated Embedding Unit. TA is for Temporal Aggregation.

Platforms Feature Extractor TA GEU (video) Word Encoder Word Aggregation GEU (text)

Edge Server 218.267 0.223 0.252 1399.972 4.779 10.005
Jetson Nano 3236.323 1.279 2.666 5884.325 30.702 98.525

temporal aggregation and gated embedding unit completed
in the order of milliseconds. The time for text-related mod-
ules is taken for a batch of 3 queries. Recall that these could
all be run offline and do not impact live video processing
time, therefore we selected a large BERT model to optimize
for performance.
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Figure 5. Event F1 score with different number of queries.

3.2.6 Performance with More Queries
As the number of predefined queries grows, so does the diffi-
culty in identifying the correct match to the incoming frames.
Fig. 5 compares the performance of mmFilter with different
number of queries. The baseline uses only queries associ-
ated with a video, in which each video has approximately 3
captions on average. In the 10- and 20-query settings, we ran-
domly inject irrelevant queries to the predefined list. We see
a slight performance drop with the addition of new queries,
but overall our model can achieve similar performance com-
pared to the baseline. Queries irrelevant to the video frames
will be farther away in the embedding space, and hence will
not affect the similarity search results. This is critical in prac-
tical settings such as AR glasses applications, where a user
may request multiple queries to be identified, but only a few
or none are present in an incoming video feed.

4 Related Work
This section discusses works related to filtering live video
streams and matching queries to images/videos.

Frame Filtering. NoScope [11] and Filterforward [5] are
two recent filtering-based approaches for dropping video
frames that do not contain objects of interest. They both
operate on training distinct binary classifiers for each in-
dividual query. In this paper, we seek to directly map the

frame features and text features into a joint transformed
space using only one feature extractor for each component.
By learning a fixed-vector representation for both video and
text, we are able to generalize to a multitude of diverse, novel
queries without the need for retraining.

Reducto [15] aims to filter frames based on cheap and low
level vision features such as edges and corners. However,
it only focuses on three kinds of queries: tagging objects,
counting queries and bounding box detection. Our approach,
mmFilter, focuses on detecting events specified by queries
with rich, natural language descriptions.

Image-Text Matching. Image-text matching is the prob-
lem of measuring the semantic similarity between visual
data and a sentence descriptor. VSE++ [8] is based on image
features and proposes a new loss emphasizing hard negative
samples. Conversely, SCAN [14] and RankMI [12] propose
a region-based attention mechanism where region features
are extracted from object detectors. In mmFilter, we focus
on image features to reduce the computational overhead.

Video-Text Matching. Video-text matching is an exten-
sion of image-text matching that has also been actively re-
searched in recent years. In MoEE [19], the model calculates
the similarity scores between each expert in different modal-
ities and the query and aggregates the weighted similarity
scores. Collaborative experts [16] proposes a collaborative
gating module to highlight or suppress the raw expert fea-
tures from different modalities. Both approaches need to
extract the video features offline and use a computationally
more expensive RGB feature extractor. Finally, Rekall [9] and
Lookout [20] adopt scripts to define the events of interests
instead of using queries expressed by natural language.

5 Concluding Remarks
Limited bandwidth between edge and cloud makes it infea-
sible to offload all the incoming frames from the camera to
the cloud. In this paper, we propose mmFilter, a multimodal
frame filtering approach that efficiently detects frames rele-
vant to natural language queries by jointly mapping them to
a common space. Adopting this technique, we are not limited
to simple object detection queries, and we can support un-
seen user queries without retraining the model or annotating
sample data for each newly introduced query. Comparing
with the state of the art approach, we have shown an improve-
ment of 1.5× in the average event F1 score. mmFilter opens
up the possibility of performing large-scale video analytics
on edge devices involving complex and dynamic queries.
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